Banking on Resolution: Portfolio Effects of Bail-in vs. Bailout

Siema Hashemi

University of Liverpool

October 21, 2024

10th IWH-FIN-FIRE Workshop on "Challenges to Financial Stability"

Bail-ins vs. Bailouts

▶ The main resolution tools: bail-in & bailout

> Despite promoting bail-ins, supervisors still lean towards bailouts

Bail-in regimes will not eradicate the need for injection of public funds where there is a threat of systemic collapse, [...], or in the event of the failure of a large complex cross-border bank, unless the failure was clearly idiosyncratic. (Avgouleas and Goodhart, 2015)

This paper: a theoretical model on the ex-ante impact of resolution on the banks' portfolio choice and default outcome in the presence of idiosyncratic and systematic shocks

Two-Period Model

Two-period model in which banks choose their portfolio composition

Funding structure

- exogenous mix of long-term and short-term debt
- long-term debt is fairly priced, short-term debt is insured

Assets

- short-term asset with idiosyncratic risk
- long-term common asset
- Supervisor can prevent second-period defaults
 - creditor bailout: insure long-term debt
 - bail-in: convert long-term debt into equity

Key Findings: Impact of Bail-ins and Bailouts

Creditor bailouts:

- ex-ante reducing funding costs
- ex-ante preventing defaults
- ► Bail-ins:
 - ex-ante reducing funding costs
 - ex-ante changing portfolio composition
 - reducing solvency risk but increasing liquidity risk
 - may generate systemic defaults

Takeaway: a resolution policy with a bail-in pre-condition (e.g. EU) may generate financial instability compared to a policy with bailouts as "systemic exceptions" (e.g. USA)

literature

Model Setup

Model Setup: Banks

Three dates t = 0, 1, 2 and large number of islands

- Single risk-neutral bank in each island
 - collects unit endowment from continuum of consumers
 - invests in an island-specific asset & an asset common across islands
- ► Banks are identical ex-ante

• Portfolios are opaque \Rightarrow risk-taking is unobservable to the market

Asset Types: Short and Long-Term

Short-term island-specific asset with return $h(\lambda_i)X_i$ at t = 1

$$X_i = \begin{cases} X_\ell, & ext{ with probability } lpha \\ X_h, & ext{ with probability } 1 - lpha \end{cases}$$

 X_{ℓ} : weak bank, X_h : strong bank

• assuming decreasing returns: $h(\lambda_i) = \lambda_i - \lambda_i^2/2$

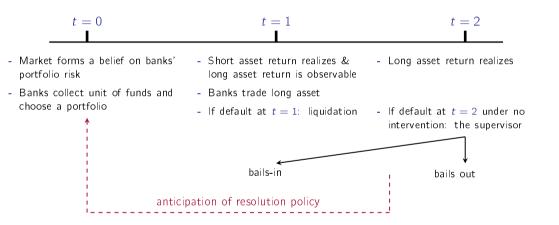
Long-term asset common across islands with return $(1 - \lambda_i)Z$ at t = 2

- tradable across islands at t = 1
- outside investors' demand d(p, Z) = (Z p)/p

Funding Structure: Short and Long-Term Debt

> A continuum of risk-neutral consumers in each island with unit endowment at t = 0

► Two (revealed) types


- early consumers investing short-term
- late consumers investing long-term
- Each bank offers
 - insured short-term debt
 - fairly priced long-term debt, subject to default costs

 \blacktriangleright Consumers have access to a safe asset \Rightarrow zero net-expected return

Bank Default and Supervisory Intervention

- Bank default creates deadweight loss
 - a fraction of asset return is destroyed
 - potential for supervisory intervention
- If a bank defaults at t = 1, the supervisor
 - sells bank's long asset (liquidation)
 - repays early consumers as the deposit insurer
- At t = 1 the supervisor anticipates a default at t = 2 and
 - laissez-faire: does not intervene
 - creditor bailout: promises to repay late consumers
 - bail-in: converts the long-term debt into equity

Timeline of Events

Key Features of the Model

1. Portfolio trade-off

- balancing solvency risk against liquidity risk
- ↑ short-term holding: ↑ cash-in-the-market price & ↑ solvency risk

2. Opaque portfolios

- market forms beliefs on bank portfolio composition
- characterizing market price of long-term asset & gross return on long-term debt

3. Portfolio risk choice

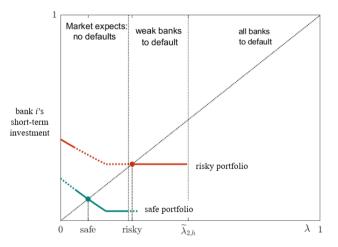
- when multiple portfolio options are available
- higher funding costs \rightarrow incentivizes riskier portfolio

Equilibrium without Aggregate Risk

market prices of the long-term asset) second-period returns) long-term funding costs

Equilibrium with Idiosyncratic Risk

- ▶ \uparrow Expected short-term investment λ
 - \uparrow price $p(\lambda)$: larger liquidity at t = 1 in the market
 - \uparrow solvency risk: \downarrow long-term asset $\rightarrow \downarrow$ second-period return & \downarrow available to sell
- ▶ Market expecting \uparrow likelihood of default \rightarrow requiring \uparrow gross return on long-term debt
- Banks maximizing second-period expected profit, trade off
 - *invest* in the long-term asset at t = 0, or
 - buy the long-term asset at t = 1 using the excess short-term liquidity
- ► Local portfolio options, given λ ,
 - safe portfolio: no defaults
 - risky portfolio: defaults following negative short-term shock


Financial Fragility in Laissez-Faire

Portfolio choice depends on consumers' belief on bank risk-taking

- 1. optimistic: assuming \downarrow short-term risky investment
 - ▶ ↓ long-term funding costs → safe portfolio
- 2. pessimistic: assuming \uparrow short-term investment
 - \blacktriangleright \uparrow long-term funding costs \rightarrow risky portfolio
- Financial fragility: self-fulfilling market beliefs generate multiple equilibria
- ▶ How does the anticipation of resolution change financial fragility?

"The purpose of a policy is to [...] restrict the set of possible equilibria, not to move or distort the unique equilibrium." (Dybvig, 2023)

Bank's Response Function Given Market Expectations

market's expectation of short-term investment

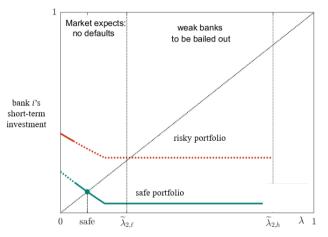
back to bailout) (back to bail-in

12/22

How Bailouts Prevent Idiosyncratic Defaults

Creditor bailout:

- ▶ If the bank (with a negative idiosyncratic shock) is going to default at t = 2
- ▶ The supervisor promises to repay the face value of long-term debt


Bailout expectations:

- Creditors will be fully repaid $\Rightarrow \downarrow$ gross return on the long-term debt
- ▶ The bank will receive zero payoff \Rightarrow bank's problem at t = 0 is unchanged

Equilibrium:

- ▶ Banks would have chosen a risky portfolio, but anticipating bailouts, they prefer a safe one
- Creditor bailouts remove the bad equilibrium with defaults

Bank's Response Function Expecting Bailouts

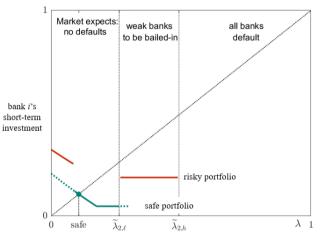
market's expectation of short-term investment

back to laissez-faire) (back to bail-in

How Bail-ins Can Prevent Idiosyncratic Defaults

Bail-ins:

- lf the bank (with a negative idiosyncratic shock) is going to default at t = 2
- > The supervisor converts the bank's long-term debt into equity
- \blacktriangleright NCWO principle limiting the conversion rate \rightarrow creditor losses lower than in laissez-faire


Bail-in expectations:

- Creditors will receive preserved value $\Rightarrow \downarrow$ gross return on the long-term debt
- ▶ The bank will receive positive payoff $\Rightarrow \downarrow$ ex-ante risky short-term investment

Equilibrium:

- Banks choose a risky portfolio with lower solvency risk
- > Under sufficient risk reduction, bail-ins remove the bad equilibrium with defaults

Bank's Response Function Expecting Bail-ins

market's expectation of short-term investment

back to laissez-faire

back to bailout

Takeaway: idiosyncratic risk

Equilibrium with Aggregate Risk

Assumptions of Aggregate Risk

• The distribution of the long-term return G(Z) is

$$Z_j = egin{cases} Z_b, & ext{ with probability } eta \ Z_g, & ext{ with probability } 1 - eta \end{cases}$$

 Z_g : good times, Z_b : bad times

▶ At t = 1 long-term asset return is observable \Rightarrow all uncertainty is resolved

Systemic event: when all banks default at the same time

market price of the long-term asset

How Bailouts Prevent Systemic Bank Defaults

Bailout expectations:

- Creditors will be fully repaid $\Rightarrow \downarrow$ gross return on the long-term debt
- ▶ The bank will receive zero payoff \Rightarrow bank's problem at t = 0 is unchanged

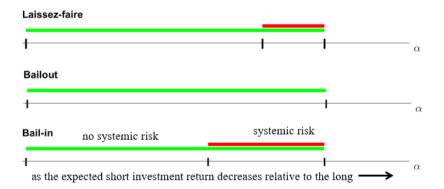
Equilibrium:

- Banks would choose a safer portfolio relative to laissez-faire
- Creditor bailouts remove the systemic equilibrium
- And reduce financial fragility

details

How Bail-ins May Increase Systemic Default

Bail-in expectations:


- \blacktriangleright Creditors will receive preserved value $\Rightarrow\downarrow$ gross return on the long-term debt
- ▶ The bank will receive positive payoff $\Rightarrow \downarrow$ ex-ante risky short-term investment

Equilibrium:

- Banks prefer a systemic portfolio
- ▶ The systemic portfolio has lower solvency risk, but higher liquidity risk
- ▶ ↓ liquidity at $t = 1 \rightarrow \downarrow$ cash-in-the-market price \Rightarrow fire sales in bad times
- ► Bail-in may trigger systemic defaults and increase financial fragility

Takeaway: Idiosyncratic & Aggregate Risk

Summary: Impact of Bailouts vs. Bail-ins

Creditor bailouts:

- Portfolio composition: unchanged safe and risky portfolio relative to laissez-faire,
- Funding: lower long-term funding cost
- \Rightarrow banks prefer a safe portfolio over a risky one
- \Rightarrow removes the bad equilibrium with defaults

► Bail-ins:

- Portfolio composition: risky portfolio with lower short-term asset relative to laissez-faire
- Funding: lower long-term funding cost
- \Rightarrow banks prefer a risky portfolio with lower solvency risk
- \Rightarrow may remove bad equilibrium with idiosyncratic defaults, but generate systemic defaults

Final note: results are extendable to asset-managing financial intermediaries

Thank you!

Theoretical Insights: Bailouts vs. Bail-ins

Bailouts:

- Prevent contagion, but raise risk-taking, leverage, or correlation of bank portfolios (Davila and Walther, 2020; Farhi and Tirole, 2012; Lambrecht and Tse, 2023; Leanza et al., 2021)
- Supervisor's lack of commitment to not bail out: "too-big-to-fail" & "too-many-to-fail" (Acharya and Yorulmazer, 2007; Chari and Kehoe, 2016; Keister, 2016; Nosal and Ordoñez, 2016; Philippon and Wang, 2023; Wagner and Zeng, 2023)

Bail-ins:

- Reduce risk-shifting and lead to earlier recapitalization (Berger et al., 2022; Clayton and Schaab, 2022)
- Higher funding costs generate moral hazard (Pandolfi, 2022)
- Negative information disclosure may trigger runs (Walther and White, 2020)
- Bailout expectations distort private efforts for bail-ins (Benoit and Riabi, 2020; Bernard et al., 2022; Colliard and Gomb, 2024; Keister and Mitkov, 2023)

 \Rightarrow **Ex-ante portfolio effect**: bailouts prevent defaults, bail-ins generate systemic defaults

Second-Period Return

Second-period return in island i

$$R(\lambda_i, X_i, p) = \begin{bmatrix} 1 - \lambda_i + a(\lambda_i, X_i, p) \end{bmatrix} \overline{Z}$$

▶ Volume traded (a > 0 bought, a < 0 sold)

$$a(\lambda_i, X_i, p) = \max\left\{rac{h(\lambda_i)X_i - heta}{p(\lambda)}, -(1 - \lambda_i)
ight\}$$

▶ Notation: $R_{\mathscr{R}}(\lambda_i)$ for $\mathscr{R} = \{h, \ell\}$ in island *i*

back

Defining Long-Term Funding Costs

The gross return on long-term debt is characterized by late consumers' participation constraint:

- expecting no default $D(\lambda) = 1$
- expecting weak banks to default at t = 2:

$$D(\lambda) = \begin{cases} \text{laissez-faire:} & \frac{1 - \theta - \alpha c R_{\ell}(\lambda)}{(1 - \theta)(1 - \alpha)} \\ \text{bailout:} & 1 \\ \text{bail-in:} & \frac{1 - \theta - \alpha \gamma R_{\ell}(\lambda)}{(1 - \theta)(1 - \alpha)} \end{cases}$$

back

• expecting weak banks to default at t = 1: $D(\lambda) = \frac{1}{1-\alpha}$

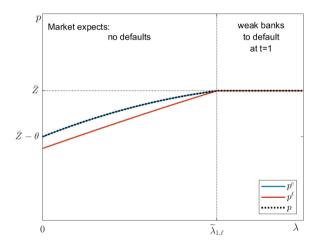
Market Price of the Long-Term Asset

Proposition 1

The market price of the long-term asset, given λ , is

 $p(\lambda) = \max\{p^c(\lambda), p^\ell(\lambda)\}$,

where $p^{c}(\lambda)$ is the continuation price, when no bank defaults at t = 1,


 $p^{c}(\lambda) = \min\{h(\lambda)\overline{X} + \overline{Z} - heta, \overline{Z}\}$,

and $p^{\ell}(\lambda)$ is the liquidation price, when weak banks default at t = 1,

$$p^{\ell}(\lambda) = \min\left\{rac{(1-lpha)[h(\lambda)X_h - heta] + \overline{Z}}{1+lpha(1-\lambda)}, \overline{Z}
ight\}.$$

Impact of Short-Term Investments on Market Prices

For large short-term risky investments, weak banks default at t = 1

Market Price of the Long-Term Asset

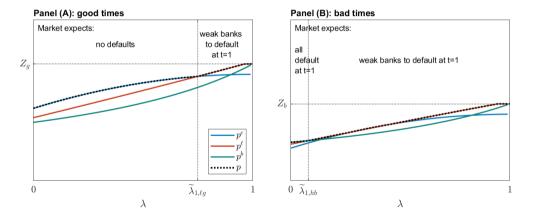
Proposition 2

The market price of the long-term asset, given λ and Z_j , is

$$p(\lambda, Z_j) = \max\{p^c(\lambda, Z_j), p^\ell(\lambda, Z_j), p^b(\lambda, Z_j)\},\$$

where $p^{c}(\lambda, Z_{j})$ is the continuation price, no bank defaults at t = 1, $p^{c}(\lambda, Z_{j}) = \min\{h(\lambda)\overline{X} + Z_{j} - \theta, Z_{j}\},$

 $p^{\ell}(\lambda, Z_j)$ is liquidation price, when weak banks default at t = 1,


$$p^{\ell}(\lambda, Z_j) = \min\left\{rac{(1-lpha)[h(\lambda)X_h - heta] + Z_j}{1+lpha(1-\lambda)}, Z_j
ight\},$$

and $p^b(\lambda, Z_j)$ is the crisis price, when both banks default at t = 1,

$$p^b(\lambda, Z_j) = \frac{Z_j}{2-\lambda}$$

Illiquidity versus Insolvency

- \blacktriangleright For large λ weak banks default due to insolvency in good times
- \blacktriangleright For low λ all banks default due to illiquidity in bad times

Funding Costs in Laissez-Faire

▶ Late consumers' anticipated payoff, conditional on the realization of X_i and Z_j ,

$$u_{ij}(\lambda) = egin{cases} (1- heta)D(\lambda), & ext{ if } R_{ij}(\lambda) \geq (1- heta)D(\lambda) \ c \ R_{ij}(\lambda), & ext{ else } \end{cases}$$

Late consumers' binding participation constraint

$$\sum_{i \in \{\ell,h\}} \sum_{j \in \{b,g\}} \Pr(i) \Pr(j)
u_{ij}(\lambda) = (1- heta),$$

 \triangleright $D(\lambda)$ u-shaped in λ : first liquidity risk decreases, then solvency risk increases

Bank's Problem in Laissez-Faire

b Bank *i*'s profit, conditional on the realization of X_i and Z_j ,

$$\pi_{ij}(\lambda_i) = egin{cases} \mathsf{R}_{ij}(\lambda_i) - (1- heta) D(\lambda), & ext{ if } \mathsf{R}_{ij}(\lambda_i) \geq (1- heta) D(\lambda) \ 0, & ext{ else } \end{cases}$$

Bank i maximizes expected second-period payoffs

 $\sum_{i \in \{\ell, h\}} \sum_{j \in \{b, g\}} \mathsf{Pr}(i) \mathsf{Pr}(j) \pi_{ij}(\lambda_i) \,,$

► First-order condition

$$\sum_{i \in \{\ell,h\}} \sum_{j \in \{b,g\}} \Pr(i) \Pr(j) \frac{\partial \pi_{ij}(\lambda_i)}{\partial \lambda_i} = 0.$$

Equilibrium under Bailout Expectations

• Late consumers expect weakly higher payoffs $\rightarrow D^{out}(\lambda) \leq D(\lambda)$

$$\nu_{ij}(\lambda) = \begin{cases} (1-\theta)D^{out}(\lambda), & \text{if } R_{ij}(\lambda) > 0\\ 0, & \text{else} \end{cases}$$

- ► Banks do not directly benefit from a bailout → unchanged maximization problem relative to laissez-faire
- Safer portfolios yield higher profits \rightarrow banks choose less risky portfolio

back

Funding Costs under Bail-ins

▶ Late consumers anticipated payoff, conditional on the realization of X_i and Z_j ,

$$\nu_{ij}(\lambda) = \begin{cases} (1-\theta)D^{in}(\lambda), & \text{if } R_{ij}(\lambda) \ge (1-\theta)D^{in}(\lambda) \\ \gamma R_{ij}(\lambda), & \text{if } (1-\theta)D^{in}(\lambda) > R_{ij}(\lambda) > 0 \\ 0, & \text{else} \end{cases}$$

Late consumers' binding participation constraint

$$\sum_{i \in \{\ell,h\}} \sum_{j \in \{b,g\}} \Pr(i) \Pr(j) \nu_{ij}(\lambda) = (1-\theta).$$

 $\blacktriangleright \text{ NCWO principle } \gamma \geq c$

• Late consumers receive preserved value $\rightarrow D^{in}(\lambda) \leq D(\lambda)$

Equilibrium under Bail-in Expectations

b Bank *i*'s profit, conditional on the realization of X_i and Z_j ,

 $\pi_{ij}(\lambda_i) = \begin{cases} R_{ij}(\lambda_i) - (1-\theta)D^{in}(\lambda), & \text{if } R_{ij}(\lambda_i) \ge (1-\theta)D^{in}(\lambda) \\ (1-\gamma)R_{ij}(\lambda_i), & \text{if } (1-\theta)D^{in}(\lambda) > R_{ij}(\lambda_i) > 0 \\ 0, & \text{else} \end{cases}$

Bank i maximizes expected second-period payoffs

 $\sum_{i \in \{\ell,h\}} \sum_{j \in \{b,g\}} \Pr(i) \Pr(j) \pi_{ij}(\lambda_i) \,,$

Banks receiving positive profits following bail-ins

- lower short-term investment for the systemic portfolio
- preferring systemic portfolio over safer alternatives