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The paper presents a modification of the matching and difference-in-differences 
approach of Heckman et al. (1998) for the staggered treatment adoption design 
and a Stata tool that implements the approach. This flexible conditional difference- 
in-differences approach is particularly useful for causal analysis of treatments 
with varying start dates and varying treatment durations. Introducing more  
flexibility enables the user to consider individual treatment periods for the trea-
ted observations and thus circumventing problems arising in canonical difference- 
in-differences approaches. The open-source flexpaneldid toolbox for Stata imple-
ments the developed approach and allows comprehensive robustness checks and 
quality tests. The core of the paper gives comprehensive examples to explain the 
use of the commands and its options on the basis of a publicly accessible data set. 
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1 Introduction
Difference-in-differences approaches have become a very popular research design for
treatment effects estimation. For example, 20 percent of all empirical articles published
by the American Economic Review between 2010 and 2012 have used this design (de
Chaisemartin and D’Haultfoeuille 2019). In most empirical applications, the basic ap-
proach with two groups and two observation times is implemented, implicitly assuming
constant treatment effects. In the context of improving access to data bases, however,
researcher are able to collect more and better information on treated units and potential
controls, with more than two times of observation. Now, not only treatments with fixed
start dates can be described; more often we find individual treatments characterized by
varying start dates and different treatment durations. In this case, a constant treatment
effect over time is not plausible, and we find a growing number of studies dealing with
potential biases and solutions for this problem.

One of the current strands of literature develops approaches within the framework
of the staggered adoption design, where units that are treated once in the observation
time are regarded as treated units from that date onwards. The approach we describe
in this paper belongs to this group. To gain more flexibility we modify the conditional
difference-in-differences approach of Heckman et al. (1998) in three ways. First, we
include individual treatment time information from the panel into the matching process.
Second we introduce a combined statistical distance function for matching. Third, we
incorporate flexible observation durations into the difference-in-differences estimation.
This flexible conditional DID approach ensures that varying treatment phases can be
accounted for in an appropriate way and that the point in time an individual is compared
to his ’statistical twin’ can be exactly determined.

Our second contribution to the empirical literature is the development of an esti-
mation tool that implements our approach and comprehensive robustness checks and
quality tests. The Stata commands flexpaneldid_preprocessing and flexpaneldid
are provided as an open-source toolbox, available at
https://cloud.iwh-halle.de/index.php/s/flexpaneldid.

The remainder of the paper is organized as follows. In section two, the special data
structure and related challenges resulting from the treatment at different times and of
different durations are explained in more detail. Section three gives an overview on
empirical approaches dealing with this data structure when estimating causal effects
and current enhancements in the econometric literature. In section four we introduce
the flexible conditional difference-in-differences approach. Subject of section five and
six is the presentation and explanation of the Stata tool consisting of two commands,
flexpaneldid_preprocessing and flexpaneldid. In section five the syntax of the
commands and some general instructions are given, in section six we present compre-
hensive examples for the use of the Stata tool.
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2 Special characteristics of the data structure
The data structure we focus on is characterized by panel information on treated and non-
treated observations, where treatment can start and end basically at every time. The
described treatment structure is typical for policy interventions common in industrial
and placed based policy (e. g. investment subsidies and R&D funding), labor market
programs (e. g. support for start-ups or training vouchers) or research funding (e. g.
EU funding for scientists). Besides, this type of treatment is typical in medicine, public
finance, finance, economics of education or labor market research.

The flexibility in the treatment adoption implies some special characteristics that
must be considered when estimating the treatment effect. Figure 1 illustrates the data
structure with the so called ’staggered treatment adoption’ (Athey and Imbens 2018;
Callaway and Sant’Anna 2019): an unbalanced panel data set of treated (T1,T2,T3, . . . Tx)
and non-treated units (NT1,NT2,NT3, . . . NTy) for the years 2004-2014 with varying
dates of treatment application and individual durations from application to the start of
the treatment and individual treatment durations. In this case, every time is a mix of
individual pre-treatment, treatment and post-treatment phases, and we observe differ-
ent ’sub-periods’ for the treated units – in terms of the treatment start dates as well as
of the duration.

01/2004 01/2006 01/2008 01/2010 01/2012 12/2014 

T2 

A 01 

T1 

A 01 02 

T3 

A 01 02 

…

NT1 

NT2 

NT3 

NT4 

NT5 

…

Observation duration; Treatment duration; A – appliciation date; 01/02 – dates of outcome observation  

Figure 1: sketch of the typical data structure

As we know from Heckman et al. (1997, 1999), the economic environment influences
the economic performance of persons or firms and should be considered when analyzing
treatments effects. In a dynamic environment, this applies not only to the place but also
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to the time of observation. The example in figure 1 can illustrate that: in the year 2008,
the financial crisis ’arrived’ in real economy. In the following recession, the economic
environment strongly deteriorated – resulting in a worse economic performance of many
firms and also persons. The subsequent upswing phase caused a significant performance
improvement for firms and persons. If we would ignore this development in the economic
environment and would compare e. g. a firm before to a firm after the crisis, we would
compare them in different economic environments. This is referred to as ’calendar time
effect’. Also the treatment effect itself is influenced by the economic situation and can
be heterogeneous over time (Bergemann et al. 2009).

Another phenomenon is referred to as ’dynamic treatment effect’ and means that the
size of the effect may depend on the length of exposure to it (Callaway and Sant’Anna
2019). Observing e. g. the outcome development from application to one year later (from
point A to point O1 in figure 1) or from application until one year after the treatment is
finished (denoted by point O2) would mean that we estimate different treatment effects
in this case. For example, Jacobson et al. (1993) argue that the earnings effect for
displaced workers tend to be large immediately after displacement and get smaller over
time.

We also find examples for ’selective treatment timing’ in the literature. In the pres-
ence of a positive temporary shock to a specific sector, firms in this sector might be
more willing to invest and to apply for a subsidy at this time (Pellegrini and Centra
2006). Another example is an inter-temporal substitution of investments due to a re-
stricted application time for investment subsidies that is observed e. g. in Bronzini and
de Blasio (2006) observe.1

The ’Ashenfelter’s dip’ (Ashenfelter 1978) or ’fallacy of alignment’ (Heckman et al.
1999) denotes the phenomenon that the anticipation of a treatment may lead to a tem-
porary change in the behavior of the applicants. Examples for such behavioral changes
are mainly discussed with regard to active labor market programs; e. g. unemployed
persons may reduce their search effort for a new job when they anticipate their partici-
pation in a training program (Bergemann et al. 2009).

The above described special impacts on the treatment effect can only be considered
by including the information on individual treatment times and ’sub-periods’ into the
estimation. In recent literature, we find some attempts to implement time information
in existing models for causal inference. Another approach, the flexible conditional DID
will be introduced in this paper.

3 Estimation approaches in empirical literature and
current enhancements

In recent empirical literature we find a growing number of causal analyses of treatments
in various economic fields that are based on data sets with a similar structure to the

1This phenomenon cannot be illustrated with the figure.
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above described one. This literature review contains examples from labour market
economics and health economics as well as evaluation studies of active labour market
policies and place based policies. In this overview, we focus on examples for causal
effects estimations on the basis of panel data with more than two observation times.

3.1 Canonical DID approaches

Following comprehensive overviews on different evaluation approaches (e. g. Abadie
2005; Blundell and Costa Dias 2009; Imbens and Wooldridge 2009) and controversial
discussions in the literature,2 the idea of a combined control for selection resulting from
observable and unobservable heterogeneity found a widespread adoption in empirical
literature.

One strand of the empirical literature is based on the (nonparametric) ’conditional
DID’ introduced by Heckman et al. (1998), that combines a DID estimation and match-
ing. Here the compared outcome changes are defined conditional on matched samples
instead of the whole samples of treated and non-treated units. For example Bergemann
et al. (2009) use a combination of kernel matching and DID to analyze causal effects
of training in East Germany on transition from non-employment to employment. They
allow for heterogeneous treatment effects resulting from calendar time by estimating
different effects for distinct fixed time periods and discuss different ideas to control
for a potential Ashenfelter’s dip. The paper of Pellegrini and Centra (2006) evaluates
the impact of investment subsidies on the performance of firms in manufacturing and
firm services sectors in the Mezzogiorno region. Using a combined matching and DID
estimator, the authors consider different treatment durations to capture dynamic treat-
ment effects. The ’virtual project duration’ for the controls are defined with the help
of the start date of the projects and the average project duration of different auctions.
Similarly, Bernini and Pellegrini (2011) analyze subsidies allocated to manufacturing
firms in the southern Italian regions. They apply a canonical(kernel and stratifica-
tion) matching and DID estimator to compare subsidized an rejected firms. Caliendo
and Künn (2011) provide empirical evidence on the effectiveness of start-up subsidies for
unemployed persons. A combination of matching of administrative data and subsequent
DID of different outcomes reported in repeated computer assisted telephone interviews
allow them to estimate long-term effects and consider effect heterogeneity among the
interviewed persons.

Another very popular strategy incorporates the idea of the nonparametric DID es-
timator into a conventional panel regression model. The basis for such ’canonical DID
models’ is that in the case of two analyzed groups and two time periods (which is referred
to as the ’2x2 case’ (Goodman-Bacon 2019, e. g.)), the nonparametric DID estimator
equals the the respective coefficient (of the interaction of the treatment group dummy
and the post-treatment-period dummy) in the two-way fixed effects DID model3 , if

2See the discussion of Dehejia and Wahba (1999, 2002); Dehejia (2005) and Smith and Todd
(2005a,b) as the most prominent example.

3This term denotes a panel DID model with time and individual fixed effects (Athey and Imbens
2018).
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the the common trend assumption is fulfilled (Angrist and Pischke 2009). Within this
model framework, Autor (2003) assesses the contribution of unjust dismissal doctrine
on employment outsourcing in the U.S. He includes ’lags’ of the dependent variable to
control for a potential Ashenfelter’s dip and ’leads’ to verify dynamics of the treatment
effect over time. In a similar way, Neumark and Kolko (2010) evaluate the effectiveness
of California’s enterprise zone programs on employment with panel data. Ham et al.
(2011) use a fixed effects DID model comparing treated Census tracts with their (in ge-
ographical sense) nearest neighbor tracts to measure the impact of different place-based
policies on local labor markets. Bronzini and de Blasio (2006) estimate the causal ef-
fects of investment subsidies in Italy within a DID model including yearly post-treatment
dummies to capture the time varying treatment effect. Marcus and Siedler (2015) ana-
lyze the effect of the late-night alcohol sales ban on alcohol-related hospitalization rates
in Germany. They apply fixed-effects DID models with various control variables to es-
timate the mean effect of the ban as well as the development over time.
Heyman et al. (2007) use a combination of year-by-year Propensity Score Nearest Neigh-
bor Matching and the canonical DID model to estimate the influence of foreign owner-
ship on wages in Swedish firms. For a panel of Swedish manufacturing firms, Greenaway
et al. (2005) perform a yearly Propensity Score caliper matching to create a pooled data
set for the subsequent random effects DID model estimation of causal links between ex-
ports and firm performance. Freier et al. (2015) use a canonical DID model combined
with entropy balancing of Hainmueller and Xu (2013) to estimate the effect of gradu-
ating from university with an honors degree on subsequent earnings in Germany.

3.2 Current developments in econometric literature

The use of canonical DID models in a panel data context rests on the presumption that
the above mentioned equality of the DID estimator and the coefficient in the two-way
fixed effects DID model can be generalized to more than two groups and/or more than
two observation times. In the last few years, however, doubts in the appropriateness
of this generalization and the implicite assumption of effect homogeneity are raised
in the literature, especially when treatment time varies and the treatment effect is
dynamic. In the following, we describe different decompositions of the canonical DID
model that are the basis for the definition/derivation of the sources of bias in case of
effect heterogeneity, and in some cases this decomposition is the starting point for the
presentation of an advanced estimator. All of the approaches presented in the following
include the timing of the treatment in one or the other way instead of characterizing the
treatment by a binary variable (like in the 2x2 case). In so called ’staggered adoption
designs’ (Athey and Imbens 2018; Callaway and Sant’Anna 2019), the treated units can
then be categorized by groups (or cohorts) based on when they first receive treatment.4
Some (more general) approaches also allow for changes in the treatment status over
time.

4Such approaches are also regarded as ’stacked DID’ (Goodman-Bacon 2019) or (in the case of
relative time definitions) as ’event studies’ (Abraham and Sun 2019). ’Relative time definition’ means
in that context that the absolute time is normalized such that the the observation period is measured
with respect to treatment time.
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Borusyak and Jaravel (2017) illustrate in an example very clearly the distinction
between estimations in the 2x2 case and the staggered adoption design. They also show
that, with canonical two-way FE models, the effect of early adopted treatments are
underweighted in the estimated average treatment effect and demonstrate the conse-
quences of different types of deviations from the assumed effect homogeneity for the
estimated effects.
Exploiting the normal distribution assumption underlying the canonical DID model,
Goodman-Bacon (2019) decomposes the estimator into a weighted average of all possible
2x2-two-way FE-DID models. The weight of each 2x2 model depends on the subsample
size and the treatment timing.5 Based on this decomposition, Goodman-Bacon (2019)
illustrates the sources of the estimation bias in the canonical DID model: if the size
of the effect is associated with the number of the treated units and/or the treatment
timing, and in case of dynamic treatment effects. The decomposition also suggests that
more flexible specifications (for example within an event-study framework) may be more
robust.

Deshpande and Li (2017) use a (sligthly modified) two-way fixed effects DID model in
an event study design to estimate the effect of closings of Social Security Administration
field offices on the number of disability recipients. They exploit the variation in the
timing of closure to compare (earlier) treated with later treated regions. In this design,
the common trend assumption relaxes to the requirement that the timing of the closings
must be as good as random rather than the closings themselves being random events.
In a similar fashion, Fadlon and Nielsen (2017) construct counterfactuals to households
affected by severe health shocks by using households that experience the same shock a
few years later to estimate the effect on the spouses’s labor supply. Their first step is
to define the time of observation in relation to the year of the shock within a specific
birth cohort. Households with individuals from the same cohort who experience the
same shock some years later serve as controls. For these households, ’placebo shocks’
are assigned to the data in order to create relative observation time in the same way
as for the treatment group. In a second step, the treatment effect is estimated by a
simple (non-parametric) dynamic DID estimator, i. e. a year-by-year comparison of
both groups. A canonical DID model with household fixed effects is used additionally
to estimate the mean effect.

Also in an event study design, Athey and Imbens (2018) show that the canonical
DID is an unbiased estimator of a particular weighted average treatment effect consist-
ing of partial effects of different adoption dates. They explicitly formulate two (rather
strong) exclusion restrictions that must be fulfilled to be able to simplify the partial es-
timators to binary treatment indicators for every adoption time period: no anticipation,
i. e. the current non-treatment outcome is not influenced by a future treatment. And
invariance to history, i. e. for units that adopted the treatment earlier, the treatment
outcome in the current period is not influenced by the treatment duration. Under these

5The weights combine the absolute size of the respective subsample, the relative size of the treatment
and control group within the subsample and the timing of the treatment. Timing has two components,
the time when the treatment is observed, and the ’time window’ or the duration, in which the subsample
is observed.
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assumptions, the canonical DID model can be regarded as the weighted average of the
effects of changes in the adoption dates: the effect for switching from never adopting
to adopting in the first period, the one for switching from never adopting to adopting
some time later, and the effect for changing from an earlier adoption date to adoption
at the initial time period.
Abraham and Sun (2019) propose a cohort-specific treatment effect estimator (for the
treated a specific number of periods after the initial treatment) where time is defined
relative to the initial treatment. This ’interaction-weighted estimator’ is estimated using
the linear two-way FE specification with interactions of relative time and cohort indi-
cators and weights each cohort-specific estimator according to the sample share of the
cohort in the respective time period. A similar idea is the nonparametric decomposition
of the treatment effect in Callaway and Sant’Anna (2019). Here, ’group-time average
treatment effects’ for groups of treated individuals are defined according to the time
of the first treatment. Counterfactuals for the group members are found among non-
treated units using propensity score matching, the group-specific effects are estimated
using nonparametric DID. Depending on the treatment context (selective treatment
timing, dynamic treatment effects, and calendar time effects), Callaway and Sant’Anna
(2019) propose different aggregation procedures for the group-time average treatment
effects that accounts for effect heterogeneity related to treatment timing.

In a more general setting, where units can switch between treatment and control
position over time, de Chaisemartin and D’Haultfoeuille (2019) decompose the canon-
ical DID model into different 2x2 comparisons. They show in a simple example, that
in case of heterogeneous (or time-dependent) treatment effects, the weights of the par-
tial estimators can become negative, if the control group is treated in the pre- and
the post-treatment period.6 Like in the studies of e. g. Goodman-Bacon (2019) and
Borusyak and Jaravel (2017), the negative weights are the reason for the bias of the
canonical DID model, if the treatment effect is heterogeneous. Similar to the idea of
Abraham and Sun (2019), the average effect estimator is then expressed as a weighted
average of partial individual estimators for different groups in different time periods.
The suggested ’Wald-Time-Corrected estimator’ is a weighted average of comparisons
of mean outcome developments between groups that switch from one treatment status
to the other (from non-treatment to treatment, or vice versa) and groups that do not
change the treatment status in the same time period.7 Additionally, de Chaisemartin
and D’Haultfoeuille (2019) propose test diagnostics for the presence of biased estima-
tors. Within the same setting, Imai and Kim (2019a) establish the equivalence between
matching and weighted two-way fixed effects estimators and decompose the canonical
DID model into a weighted average of the estimators for unit fixed effects, time fixed ef-
fects, and pooled regression estimators - with negative weights for the pooled regression
estimator. Based on this decomposition, they propose a (nonparametric) ’multi-period
DID estimator’ that combines three sets of observations: the ’within-unit matched set’
(which contains previous observations of the treated unit), the ’within-time matched

6Especially in periods with many treated groups and for groups that are treated for many periods,
negative weights may be more likely.

7In the staggered adoption design, the estimator compares groups that switch from non-treatment
to treatment with non-treated groups.



8

set’ (which is defined as a group of control observations in the time of treatment), and
the ’adjustment set’ (which contains previous observations of the controls). The multi-
period DID estimator is the average of the 2x2-DID estimators applied whenever there
is a change from the control status to the treatment status.8

Imai et al. (2019) propose a matching-based DID estimator for time series cross
sectional data. The estimator selects potential control observations for every treated
unit at a specified time period using propensity score matching and weighting schemes.
The first step is to align the treatment history for a specific time span via exact matching,
thus creating matched sets for the treated units. The matched sets are then refined
by caliper matching of the pre-treatment-outcome and additional covariates. The last
step is the DID estimation as weighted average of individual differences, i. e. mutual
comparisons of the outcome development of the treated and the development of the
average outcome in the respective refined matched set. Imai et al. (2019) show that the
proposed estimator is equivalent to a weighted linear two-way FE model under certain
assumptions. As a measure for matching quality, they propose a check of the mean
standardized difference between a treated and its matched control in each covariate
at each pre-treatment time period, aggregated across all treated observations for each
covariate and each time period.

In the next chapters 4 and 5, we present the nonparametric ’flexible conditional DID
estimator’ and its implementation, the Stata toolbox flexpaneldid. This approach
has similarities especially to the approaches of Callaway and Sant’Anna (2019) and
Imai et al. (2019). The basic idea is also to combine matching and DID to find ade-
quate controls for the treated units. Like Callaway and Sant’Anna (2019) we apply the
staggered adoption framework and define time in relation to the treatment start. The
flexible conditional DID estimator can be regarded as a special case of the group-time
average treatment effects approach with the number of groups equal to the number of
treated observations and respective group sizes of one. The single group-time estima-
tors are summarized in a simple weighted average with respective group weights of one.
Different from the mentioned approach, we select control observations individually for
every treated unit and compare individual outcome developments - which is similar to
the approach proposed by Imai et al. (2019). Different from both above mentioned ap-
proaches, we propose a statistical matching procedure that gives equal weights to each
included covariate. This statistical distance function gives a ’pure’ description of the
similarities and disparities regarding the individual covariates, and the overall indica-
tor reflects the comparability of the observations without covariate weights in favour
of ’important’ or particularly similar/dissimilar covariates. Since we consider the time
information in the matching process, this approach is very flexible in the definition of
treatment start and treatment duration.
Moreover, the definition of potential counterfactual events in the first step of the ap-
proach described in Fadlon and Nielsen (2017) is very similar to the data preprocessing
of the flexible conditional DID.

8A similar model can be found in Imai and Kim (2019b) for unit-fixed effects DID models.
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4 The flexible conditional DID
The aim of the approach is to consider problems associated with heterogeneous treat-
ment effects in a panel data context (see section 2). In the flexible conditional DID,
we incorporate the observation time information from the panel data into the matching
process. The applied preprocessing decribed below will remove a potential calendar time
effect.9 Defining different observation periods for the outcome comparisons (i. e. esti-
mating more than one treatment effect) may also consider a dynamic treatment effect.
Moreover, the flexible conditional DID helps to account for behavioural changes like the
Ashenfelter’s dip in that it enables the user to consider expectations on the duration of
the ’dip’ and exactly determining the matching and the outcome observation time (in
relation to the treatment start).

In the flexible conditional DID, the idea of the nonparametric conditional difference-
in-differences approach introduced by Heckman et al. (1998) is transferred to the frame-
work of the staggered adoption design. 10 In this combination of matching and DID, the
conditional independence assumption for matching and the common trend assumption
required for DID are replaced by the ’conditional parallel trend assumption’ (Callaway
and Sant’Anna 2019), implying that unobservable individual characteristics must be in-
variant over time for units with the same observed characteristics. As for usual match-
ing, the common support condition must be fulfilled (Callaway and Sant’Anna 2019).
Additionally, the approach assumes no spillover effects (this corresponds to the stable
unit treatment value assumption for matching), and that potential carryover effects do
not influence the matching variables at the matching time (Imai et al. 2019). The last
assumption is usual for the staggered adoption design and is referred to as ’irreversibility
of treatment’ (Callaway and Sant’Anna 2019), i. e. if a unit receives a treatment, it is
regarded as treated unit for all the following time periods.

The first step of the flexible conditional DID approach is an extensive data reor-
ganization to incorporate the observation date of all matching variables and outcomes.
Hence, we limit the set of potential partners for every treated unit to those observed
just at the individual matching date, e. g. the treatment start. Then the matching
algorithm selects one or more statistical twins among these pre-selected units.11 In this
step, we normalize the observation time of the matching variables and the outcomes
such that they are measured with respect to the individual treatment start.

The second step is matching. Basically, each matching process that allows for (at
least partial) exact matching is suitable. This exact matching option is required to
consider the time information from the pre-selection process. As a novelty, we add a
matching based on a combined statistical distance function.12 This distance function

9Fadlon and Nielsen (2017) use a quite similar approach, and they state: ’By construction, this
research design [. . . ] mechanically nets out calendar [. . . ] effects.’

10Ho et al. (2007) denote the matching process in this context as a nonparametric data preprocessing
in the sense that it leads to more reliable causal effect estimates by reducing bias and variance.

11For example, when a firm receives investment subsidies in January 2007, we consider its charac-
teristics in this month and will assign a firm which has similar characteristics in January 2007.

12In a previous simulation study, statistical distance functions proved to be superior to Mahalanobis
metric and Propensity Score matching, especially in small samples. For more details see Dettmann
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follows an idea of Kaufmann and Pape (1996) and can be described as the weighted av-
erage of scale-specific distance functions. It belongs to the group of linear-homogeneous
aggregations (Opitz 1980). For our analysis, we consider the results of Dettmann et al.
(2011) and combine the mean absolute difference for continuous and the generalized
matching coefficient for categorical variables as they proved to be superior to other
distance measures in the simulation analysis.13

When combining scale-specific distance functions, the functions usually have to be
normalized and transformed (Diday and Simon 1976). In our case, the differences in
the continuous variables are normalized by the maximal observed differences of the
respective variables. The similarity information of the generalized matching coefficient
is transformed into a distance measure. Weighting the functions by the respective
number of variables, the distance function for a treated firm i and a non-treated firm j
can be described as follows:

Distij =
1

N
[Nm ·ADij +Nn · (1−GMCij)] . (1)

The terms Distij , ADij and GMCij denote the aggregated distance function and the
scale-specific distances, N is the total number of variables with N = Nm +Nn, where
Nm is the number of continuous variables and Nn that of the categorical ones.

The mean difference of the continuous variables is calculated using the normalized
absolute difference:

ADn,ij =
1

Nm

Nm∑
n=1

|xni − xnj |
diffmax(xn)

where || denotes absolute values, and diffmax(xn) is the maximum observed difference
of variable xn.

The generalized matching coefficient GMCij can be defined as the share of covariates
with equal values in all categorical variables:

GMCij =
1

Nn

Nn∑
n=1

Q(xni,xnj) with Q(xni,xnj) =

{
1 if xni = xnj

0 else.

As can be observed from the equation, using the generalized matching coefficient

et al. (2011). The reason for the better (in the sense of ’more similar’) control groups compared to
the results of the Mahalanobis metric may be seen in the consideration of the different scales of the
matching variables in the presented approach. The weakness of Propensity Score matching is that
estimating the score implies a weighting scheme of the variables according to their influence on the
treatment probability, not on the outcome (Zhao 2004). This may result in quite different outcomes
for units with identical scores, particularly in small samples (Fröhlich 2004). King and Nielsen (2016)
and King and Zeng (2006) doubt the Propensity Score to be suitable for empirical studies, when the
score itself has to be estimated.
Another alternative is the Coarsened exact matching procedure of Blackwell et al. (2009). This approach
is implemented as option in the flexpaneldid command.

13Although the alignment of the history of outcome and covariates instead of considering their
current values, as is proposed in Imai et al. (2019) is not explicitly described for our approach, such
data can be included in the matching process as well.
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allows for different numbers of possible values in the covariates. The variables with
coincident values are equally weighted irrespective of the number of possible values. 14

Based on this matching process, the average treatment effect for the treated ATT
is estimated. Within the framework of the conditional DID model, usually the mean
outcome developments in the treated and the control group are compared. Different
from the standard model, the flexible conditional DID compares individual differences
in outcome development between the treated firms i and their respective controls j.
The estimator is the mean of the individual comparisons.15

ATT =
1

I

I∑
i=1

[(Yi,t0i+βi − Yi,t0i)− (Yj,t0i+βi − Yj,t0i)] . (2)

As can be observed from equation 2, we include individual treatment start dates, denoted
by index t0i, and a flexible number of time units, e. g. months, t0i + βi, reflecting
the individual duration from treatment start to outcome observation. Y denotes the
outcome.16

To draw causal inference in the presence of non-random sampling we apply a t-
test with corrected standard errors. The correction terms are implemented using the
matching-based procedure of Abadie et al. (2004); Abadie and Imbens (2006, 2011).
The number of matches we fix to two (like the default setting in the teffects nnmatch
comand in Stata.)

Due to heterogeneous treatment durations, the observed periods may be heteroge-
neous among the treated individuals. The average treatment effect for the treated is
thus a weighted average of different observation periods.17

With the flexpaneldid toolbox we provide an easy-to-apply implementation of
the proposed matching and DID approach within the staggered adoption design. The
command provides an option for the inclusion of the pre-treatment outcome development
for a user-defined time period and also trends or developments of matching variables
can be included, if they are defined in the data or prior to the use of flexpaneldid.
Therefore, we want to make one important remark before presenting the command. It
has been considered as common knowledge for the use of matching procedures that one
should include those variables that influence the treatment assignment and the outcome

14Like in Imai et al. (2019), treated observations for whom we do not find suitable matches, are
excluded from the sample to preserve internal validity.

15For simplicity of the notation, equation 2 denotes the case of a nearest neighbor matching; when
more than one non-treated observations are selected as controls, the control outcomes are calculated
as the average outcome over all selected controls. This is the case for radius matching and ties, which
are are also implemented in the flexpaneldid.

16When more than one continuous covariate is used for matching, the resulting estimator will be
biased without an adjustment. The same is true for categorial variables that are not exactly matched
(Abadie and Imbens 2006, 2011). Following Abadie et al. (2004), we apply the regression-based bias
correction to adjust the start and the end values of the outcome development.

17In case one wants to specify the observation period to be common for all treated units, the
flexpaneldid command includes the option to define the observation period in relation to the treatment
start (’outcometimerelstart’).
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(Heckman et al. 1999). When choosing matching variables in the context of panel data,
e. g. inclusion of outcome development and pre-treatment history of covariates as is
proposed by Imai et al. (2019), the behaviour of the covariates over time should also
be considered. Since matching is a sample selecting technique, especially the so called
’regression to the mean’ needs to be controlled for.18

5 The flexpaneldid toolbox
Under the following link (https://cloud.iwh-halle.de/index.php/s/flexpaneldid), we pro-
vide a Stata toolbox that implements the described flexible conditional DID approach
and comprehensive quality and robustness checks. In the following, we describe the two
commands flexpaneldid_preprocessing and flexpaneldid and explain the options
that can be selected.

Before running the flexpaneldid toolbox one has to install or update the Stata
ado-files psmatch2, pstest and cem, which are used in the flexpaneldid command.

5.1 Description

Flexpaneldid is a Stata toolbox for causal analysis of treatments with varying start
dates and varying treatment durations within panel data with more than two observation
times. It consists of two commands based on each other, flexpaneldid_preprocessing
and flexpaneldid. In the flexpaneldid_preprocessing, the original data set is re-
arranged in that individual selection groups for every treated unit are created which
contain all potential controls. The result of this preprocessing is a temporary dataset
with information that are crucial for the use of the flexpaneldid.

Based on the temporary data set, the flexpaneldid estimates the average treat-
ment effect for the treated. For this step, different matching approaches are available.
Additionally, quality and robustness checks can be conducted.

The flexpaneldid toolbox contains many relative time definitions. The following
graph illustrates the relationships between treatment start and related time definitions
and treatment end and related time.

18The selection process may choose potential control units with extreme values relative to the group
means in order to find partners for the treated. If those variable values vary over time, the matched
units will ’regress back’ toward the means of the groups from which they are selected (Daw and Hatfield
2018).
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Figure 2: sketch of the relative time definitions in flexpaneldid

5.2 flexpaneldid_preprocessing

Syntax

flexpaneldid_preprocessing, id(varname ) treatment(varname ) time(varname )

matchvars(varlist ) matchtimerel(integer )

[ matchvarsexact(varlist ) prepdataset(string) replace ]

Inputs

id(varname ) uniquely identifies objects in the panel dataset; the variable must be an
integer or string.

treatment(varname ) contains the variable defining the treatment; input must be
in 0-1 format.
Important note: The variable must equal to one for the whole treatment phase. In case
of repeated treatments for one unit (identified by a unique id), the repeated treatments
are handled as one treatment phase.

time(varname ) identifies the time information in the panel; input must be an integer
indicating an absolute time, e. g. year, month, quarter.
Important note: If the data contain only information in ’date’ format, this information
must be converted into an integer.

matchvars(varlist ) should contain all variables that may be used for matching.

matchtimerel(integer ) is a relative time specification (in relation to the treatment
start) that defines the time of matching; default = 0 (if no matching time is defined).
In this case, flexpaneldid_preprocessing uses variable values observed at the treatment
start.
Important note: The dimension of the parameter in parentheses depends on the dimen-
sion of time that is defined for time.
For example, matchtimerel(-1 ) means that the matching process is conducted one
year before the treatment starts, if the dimension of the time variable is years.
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Options

Option matchvarsexact(varlist ) indicates those variables that are used for exact
matching. Exact matching variables are applied already at the preprocessing step.

The prepdataset(string ) replace option specifies the path where the data set
containing the preprocessing result is stored. replace overwrites any existing data set
with the new data. We highly recommend the use of this option.19

5.3 flexpaneldid

Syntax

flexpaneldid depvar, id(varname ) treatment(varname ) time(varname )

prepdataset(string )

(statmatching(con(varlist) cat(varlist) [ties | radius(float )]) |
cemmatching(varname1 [(cutpoints1) ] [varname2 [(cutpoints2) ]...] [k2k])

(outcometimerelstart(integer ) | outcometimerelend(integer ))

[ outcomedev(integer [integer ]) test didmodel outcomemissing ]

Before starting flexpaneldid, the user must reload the original data.

Inputs

depvar defines the analyzed outcome; the input must be numerical.

id(varname ) uniquely identifies objects in the panel dataset; the variable must be
an integer or string.

treatment(varname ) contains the variable defining the treatment; input must be
in 0-1 format.
Important note: The variable must equal to one for the whole treatment phase. In case
of repeated treatments for one unit (identified by a unique id), the repeated treatments
are handled as one treatment phase.

time(varname ) identifies the time information in the panel; input must be an integer
indicating an absolute time, e. g. year, month, quarter.
Important note: If the data contain only information in ’date’ format, this information
must be converted into an integer.

prepdataset(string ) specifies the path where the preprocessing data set is stored.
The information in this data is crucial for the use of the flexpaneldid.

19When the path is given, the flexpaneldid can repeatedly be applied without running the prepro-
cessing again.
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Options

One of the two options for the distance metric for matching must be selected:

statmatching(con(varlist) cat(varlist) ) indicates that the statistical distance
function according to equation 1 is used for matching. The variable names included in
con(varlist) indicate the continuous matching variables, which must be numerical
variables; cat(varlist) contains the categorical variables, which must be integers.
The default matching algorithm is a nearest neighbor matching with replacement.20
Alternatively, one can chose between the options ties and radius(float). Option ties
means that if more than one nontreated is the best partner for a treated observation,
the counterfactual outcome is constructed using all nontreated with equal distance.
Option radius(float) indicates that all nontreated within the defined radius are used
to construct the counterfactual outcome. The defined radius must be a float number in
the range between 0 and 1.

cemmatching(varname1 [(cutpoints1) ] [varname2 [(cutpoints2) ]...]) in-
dicates that the Coarsened Exact Matching of Blackwell et al. (2009) will be executed.21
Like in the cem command, including cutpoints for the matching variables is possible,
either formats [(#integer) or (numlist)] are allowed. Using option k2k creates matched
strata with equal numbers of treated and controls. See Blackwell et al. (2009) for more
details on the cem command.

The flexpaneldid command enables the user to define the period of outcome devel-
opment that should be compared between treated and controls. (The starting point of
the observed development coincides to the start of the treatment.) One of both options
must be selected:

outcometimerelstart(integer ) is a relative time specification that defines the
end of the outcome development in relation to the treatment start. In case of repeated
treatments, the relative time refers to the start of the first treatment.
Important note: The dimension of the parameter in parentheses depends on the dimen-
sion that is defined for time.
For example, outcometimerelstart(3 ) means we observe the outcome development
from the individual treatment start to three years after the start of the treatment, if
the dimension of the time variable is years.

outcometimerelend(integer ) is a relative time specification that defines the end
of the outcome development in relation to the treatment end. In case of repeated treat-
ments, the relative time refers to the end of the last treatment.
Important note: The dimension of the parameter in parentheses depends on the dimen-
sion that is defined for time.
For example, outcometimerelend(2 )means that we compare the outcome development
from the treatment start to two years after the treatment is finished, if the dimension
of the time variable is years.

20This option refers to psmatch2, neighbor(1 ) pscore(statistical distance ).
21To ensure reproduceable results, a ’hard coded’ seed value is set in the ado-file.
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The command provides the possibility to consider the pre-treatment outcome in the
matching process. Two options are available. outcomedev(integer ) selects the level
value of the outcome at a time defined in relation to the treatment start.
outcomedev(integer integer ) defines an outcome development, the two integers give
the start and the end of the development in relation to the treatment start.
Important note: The dimension of the parameter(s) in parentheses depend on the di-
mension that is defined for time. Both parameters are required to be integer ≤ 0.
For example, outcomedev(-3 -1 ) means the outcome development from three to one
year(s) before the individual treatment starts, if the dimension of the time variable is
years. outcomedev(-3 ) considers the outcome level three years before treatment starts
as additional matching variable.

test executes quality tests after matching. The tests conducted in pstest and
quantile-quantile plots are presented. Further test are presented depending on the
matching process that is selected: For cemmatching additionally the overall imbalance
measure L1 and univariate imbalance measures described in Blackwell et al. (2009) are
displayed. For statmatching, KS-tests for continuous variables and chi-square tests for
the categorical variables are executed in addition.

didmodel is an option for robustness checks on the basis of a standard two-way DID
model. The first model mimics the 2x2 case (two groups and two observation times) in
a fixed effects model, namely the treatment start and the end of the defined period of
outcome development. The second model is a canonical fixed effects DID model with
standard errors allowing for intragroup correlations. The observation period is trimmed
at the defined end of the outcome development.22 Important note: Since both models
are based on the assumption of homogeneous effects (see chapter 3 for more details),
they should be used as robustness checks only, but not as standalone estimations.

Finally, every matching process is characterized by a tradeoff between sample size
for the treatment effect estimation and definition of the best control group in terms of
comparability. Default for the command is a check if the depvar is observable for the
defined period of outcome development before matching is performed. (This reflects
the preference for the sample size to be as big as possible). Using the outcomemissing
option disables this check. It should only be used with rather big data sets when the
user has a preference for the control group to be as similar as possible.

22Both models are estimated using the Stata command xtreg. The exact specification of the models
is given in the output.
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Stored information

Running flexpaneldid produces a new data set with the following variables that can
be saved if required:

id unique identifier
treatment variable defining the treatment
first_treatment variable defining time of the treatment start
last_treatment variable defining the time of the treatment end
nt_multi_select number of assignments for multiple assigned non-treated observations

(for units assigned only once, this variable contains a missing)
time time information
depvar analyzed outcome
panel_id observation identifier for internal use
post_treat_dummy dummy indicating the the time after treatment
post_treat_dummy_rel_time count variable for time periods after treatment

6 Detailed application examples
In this section, we present four comprehensive examples to illustrate the use of the
flexpaneldid toolbox and the outputs resulting from the available options. In order to
reproduce the data characteristics described in section 2 (see figure 1), we need a panel
data set with more than two observation times, individual treatment starts and treat-
ment durations, possible multiple treatments and differently scaled variables character-
izing the observed units. We start with a publicly available data set, the ’patent’ data
provided by Wooldridge (2010)23 and generate some additional variables: a fictive treat-
ment variable and some categorically scaled variables by manipulating existing categor-
ical variables and generating categorical variables from continuous ones. The result is a
small example data set that exhibits a similar structure to the above described one and is
provided at the following link: https://cloud.iwh-halle.de/index.php/s/flexpaneldid.24
Under the same link, one can find the files flexpaneldid_preprocessing.ado and
flexpaneldid.ado as well as the respective help files. Before starting work with the
toolbox, one also has to install or update the Stata ado-files psmatch2, pstest and
cem, which are used by the toolbox.

The example panel data set consists of yearly information on uniquely identified firms
that are characterized by categorical and continuously scaled variables. The observation
period is 1972 to 1981. The treatment can occur within the first five years of observation,
the start and duration can vary among the treated firms. Also multiple treatments are
possible. For the treated firms, the treatment variable equals one during the whole
treatment period and zero before and after the treatment; for non-treated firms it is
always zero. In case of multiple treatments, the treatment variable equals one from the
start of the first treatment until the end of the last treatment. Suppose now we want to
estimate the causal effect of a certain treatment on the number of patents at the firm

23The data set can be found at http://www.stata.com/data/jwooldridge/eacsap/patent.dta.
24The data generation is presented in the appendix.
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level. The flexpaneldid toolbox offers different opportunities to do this.

6.1 Example: Preprocessing

First of all, we run flexpaneldid_preprocessing. Compulsory details are the indi-
vidual identification of the observed units, id(cusip ), the definition of the treatment
variable, treatment(treatment ) and the variable identifying the time units in the
panel, in our sample time(year ). Besides yearly data, also e.g. monthly or quarterly
data can be the basis for estimations with the toolbox. The next necessary information
are the matching variables. Here, all variables that will be potentially interesting for
matching should be included, since the data preprocessing can be the basis for more
than one run of the flexpaneldid. We also define the matching time in relation to
the treatment start. For the example we choose matchtimerel(-1 ), meaning that the
(individual) matching time for treated firms is one year before the individual treatment
starts.25 Next, we define characteristics that are used for exact matching, in our ex-
ample matchvarsexact(sic_cat).26 Although it is optional to save the preprocessing
data, we recommend to use this option, because flexpaneldid can then repeatedly
be applied without running the preprocessing again and again. Summing up all the
information, the command looks like this:

flexpaneldid_preprocessing, id(cusip ) treatment(treatment ) time(year )

matchvars(employ stckpr rnd sales return pats_cat rndstck_cat rndeflt_cat ) 
matchtimerel(-1 ) matchvarsexact(sic_cat )
prepdataset(’preprocessed_data.dta’) replace

After having submitted all the required information, we get the following output.
The first part consists of a summary of all our submitted information and selected
options:

********************************************************************************
************************* flexpaneldid - preprocessing *************************
********************************************************************************

id: cusip
treatment: treatment
time: year
matchvars: employ stckpr rnd sales return pats_cat rndstck_cat rndeflt_cat
matchvarsexact: sic_cat
match_time: -1
prepdataset: preprocessed_data.dta

25Also the relative matching time refers to the variable indicating the time in the panel, time(year ).
26Depending on the number of treated observations, potential controls and the size of the original

data set, the run time of the data preprocessing may be rather long. In this case, it is advantageous
to define as many variables for exact matching as possible. This will reduce the size of the individual
selection groups and thus, the run time.
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The second part gives some details on the preprocessing. For each of the preprocess-
ing steps, a dot is displayed to show the preprocessing progress. After the preprocessing
is finished, we get a summary on the initial number of the treated observations (in our
case 61), the number of observations that are dropped, because the preprocessing does
not find any potential controls (in our case 0), the number of successfully assigned se-
lection groups (61), and the average number of potential controls for the treated (or in
other words, the mean size of the selection groups, here 45.7).

********************************************************************************
************************* Preprocessing ****************************************
********************************************************************************
Preprocessing of 61 treated:
.................................................. 50
........... 61
********************************************************************************
************************* Preprocessing - Summary ******************************
********************************************************************************
Number of treated: 61
Number of treated dropped during preprocessing: 0
Number of treated after preprocessing: 61
Mean size of selection groups: 45.7377

Based on the stored preprocessed data set, we can now use the flexpaneldid to
estimate the treatment effect for the treated with different matching approaches. We
are interested in the effect of a certain treatment on the number of patents.

6.2 Example: Nearest neighbor matching based on the statistical
distance function including quality tests

Before we continue, we must reload the original data:

use example_data.dta, clear.

In the first example we want to run an estimation based on the flexible conditional
DID approach described in section 4. Thus, we select option statmatching and distin-
guish between continuous and categorical matching variables: statmatching(con(employ
stckpr rnd sales ) cat(pats_cat rndstck_cat )). We will also include the pre-
treatment development of the number of patents from two years to one year before
treatment into the matching process, therefore we define outcomedev(-2 -1 ).27 The
outcome we want to observe is the change in the number of patents from treatment
start to three years afterwards. For the example we chose outcometimerelstart(3 ).
Furthermore, we want to get displayed the results of the quality tests for matching.
Finally, we specify the path where the preprocessing data is stored. Summing up all
the information, the command looks like this:

27It is important to note that the observation time of the pre-treatment outcome is defined relative
to the treatment start and refers to the variable indicating the time in the panel, in our example
time(year).
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flexpaneldid patents, id(cusip ) treatment(treatment ) time(year )
statmatching(con(employ stckpr rnd sales ) cat(pats_cat rndstck_cat ))
outcometimerelstart(3 ) outcomedev(-2 -1 ) test
prepdataset(’preprocessed_data.dta’)

The output for the first example is as follows. At first, we get again a summary of
our inputs. Second, we see a short summary for the executed matching procedure. In
our example, for 47 out of the 61 treated units, the matching procedure finds a partner.
In the matching process, 39 non-treated units are used as partners. That means, some
of the non-treated units are used as partner for more than one treated, which is typical
for the implemented nearest neighbor matching with replacement.

********************************************************************************
************************* flexpaneldid *****************************************
********************************************************************************

outcome: patents
id: cusip
treatment: treatment
time: year
outcome_time_start: 3
outcome_time_end: .
outcome_dev: -2 -1
cemmatching:
statmatcing: , con(employ stckpr rnd sales) cat(pats_cat rndstck_cat)
test: test
outcomemissing:
didmodel:

********************************************************************************
******************** Matching: STAT ********************************************
********************************************************************************

********************************************************************************
**************** flexpaneldid - Matching Summary *******************************
********************************************************************************

NT T

All 165 61
Matched sample 39 47

As we selected the test option, the results of some quality checks for the matched
groups are displayed. The tests are made at matching time, in our example one year
before the treatment starts. First, the tests provided in the Stata command pstest
by Leuven and Sianesi (2003) are conducted. For each of the matching variables, we
find the means in the treated and in the control group, a measure for the standardized
percentage difference – or bias – between the means in both groups, and a test if the
means in the control group equal the ones in the treated group. Additionally we get
an information on the similarity of the variances in the treated and the control group.
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We would conclude that the means of all the matching variables are balanced, but the
variances of stckpr, sales and outcome_dev are not.

********************************************************************************
********************************* ps-test **************************************
********************************************************************************

Mean t-test V(T)/
Variable Treated Control %bias t p>|t| V(C)

employ 26.197 20.337 8.6 0.42 0.677 1.13
stckpr 25.779 18.28 23.1 1.12 0.266 6.36*
rnd 38.116 31.329 4.6 0.23 0.822 1.30
sales 1201 1054.5 3.9 0.19 0.849 0.56*
pats_cat 1.9362 1.8936 3.2 0.15 0.879 0.98
rndstck_cat 3.4255 3.2979 5.2 0.25 0.802 1.05
outcome_dev -1.617 -1.5957 -0.2 -0.01 0.991 1.81*

* if variance ratio outside [0.56; 1.80]

Ps R2 LR chi2 p>chi2 MeanBias MedBias B R %Var

0.037 4.77 0.688 7.0 4.6 44.2* 2.27* 43

* if B>25%, R outside [0.5; 2]

In case of matching based on the statistical distance function, additional scale-
specific test statistics for the included variables are displayed. For all continuous vari-
ables, the results of a Kolmogorov-Smirnov test are presented, for the categorical vari-
ables, the results of chi-square tests are available. For reasons of space, we only present
here the tests for the pre-treatment outcome development and the variables employ
(continuous) and pats_cat (categorical) as an example. In the three displayed cases,
the tests indicate no significant differences in the variable distributions between the
treated and the control group. In case of the KS test, the corrected p-values of 0.28
for employment and 0.177 for the pre-treatment outcome development tell us that the
variable distributions between the treated and the control group are not significantly
different. In case of the χ2 test for pats_cat, the p-value of 0.982 – and also a look at
the respective number of observations in the categories – indicate balanced samples.



22

********************************************************************************
********************************* KS-Test **************************************
********************************************************************************
ksmirnov employ , by(treated)
Two-sample Kolmogorov-Smirnov test for equality of distribution functions
Smaller group D P-value Corrected

0: 0.1915 0.178
1: -0.0638 0.826
Combined K-S: 0.1915 0.355 0.280

Note: Ties exist in combined dataset;
there are 88 unique values out of 94 observations.

...
(Output for stckpr, rnd, sales are omitted.)

ksmirnov outcome_dev , by(treated)
Two-sample Kolmogorov-Smirnov test for equality of distribution functions
Smaller group D P-value Corrected

0: 0.0851 0.711
1: -0.2128 0.119
Combined K-S: 0.2128 0.238 0.177

Note: Ties exist in combined dataset;
there are 27 unique values out of 94 observations.

********************************************************************************
********************************* Chi2-Test ************************************
********************************************************************************
tabulate pats_cat treated, chi2

pats_cat
(at

treatment treated
time -1) 0 1 Total

0 8 8 16
1 14 12 26
2 7 9 16
3 11 11 22
4 7 7 14

Total 47 47 94
Pearson chi2(4) = 0.4038 Pr = 0.982

...
(Output for rndstck_cat omitted.)
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Figure 3: Quantile-quantile plots of the continuous matching variables, example 1

The quantile-quantile plots of the continuous matching variables give a graphical
impression on the comparability of the matched groups. They compare the distributions
in both groups by means of the plotted quantiles. The 45◦-line represents identical
distributions. From the figure 3 we see small deviations from the 45◦-line for all displayed
variables, mostly at the tails of the distributions.

In the last step, the estimation result for average treatment effect for the treated
is displayed. In the display, all relevant information are summarized: the type of the
estimator (in our example the nearest neighbor matching), the distance metric (in our
example the statistical distance function), the number of the treated observations and
unique controls included in the estimation (in the example 47 treated and 39 controls)
and the mean number of matches per treated (in the example, not surprisingly, one).
In our example, we observe a negative development of the number of patents for the
period from the start of the treatment until three years afterward, both for the treated
(−10.02) and the controls (−7.82). The mean difference in the patents development
between treated and controls is −2.20.28 To assess the statistical significance of this
difference, we look at the p-value of the modified t-test for corrected standard errors.29
The p-vaue of 0.7193 indicates that the difference is not significant.

28We apply the regression-based bias correction of Abadie and Imbens (2006, 2011) to adjust the
start and the end values of the outcome development.

29The correction follows the matching-based procedure of Abadie et al. (2004); Abadie and Imbens
(2006, 2011) with the number of matches fixed to two (like the default setting in the teffects nnmatch
comand in Stata).
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One important hint : as the data base contains only an arbitrarily defined treat-
ment, the estimation results have no meaningful interpretation. We present them for
illustrative purpose only.

********************************************************************************
**************** Conditional Diff-in-Diff **************************************
********************************************************************************
Average treatment effect for the treated
Estimator : Nearest neighbor No. of treated obs = 47
Distance metric : Statistical DF No. of unique controls = 39

Mean no. of matches = 1

Outcome mean Diff DiD* AI robust z P>|z|
treated controls S.E.

patents -10.0213 -7.8176 -2.2037 6.0938 -0.3616 0.7193

* Consistent bias-corrected estimator as proposed in Abadie & Imbens (2006,2011).

6.3 Example: Radius matching based on the statistical distance
function including robustness checks

Now we want to use a random matching based on the statistical distance function –
with slightly different matching variables. Also the second example we can base on the
data set created in the preprocessing.30

Before we continue, we must again load the original data:

use example_data.dta, clear.

Besides some changes in the considered matching variables, we use some different
options. Now, the observation time for the outcome development is defined in relation
to the end of the treatment, outcometimerelend(2 ) denotes that we compare the
outcome development from the treatment start to two years after treatment is finished.
Also in this example, we take the pre-treatment outcome into account for matching, now
with the level value two years before treatment starts, outcomedev(-2 ). In the example
we include the robustness checks based on the DID model, didmodel. Additionally, we
chose the option outcomemissing.31. This may reduce the sample size, but will produce
the best possible matches in that the approach selects potential partners considering
only the matching variables (and not checking if the outcome is observable at the defined
time).

30This makes apparent that it is advantageous to include all variables in the preprossesing that
might be useful for further analyses.

31Although the example data set is not large, we chose the option for illustrative reasons.
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flexpaneldid patents, id(cusip ) treatment(treatment ) time(year )
statmatching(con(employ stckpr return ) cat(rndeflt_cat rndstck_cat ) radius(0.1))
outcometimerelend(2 ) outcomedev(-2 ) didmodel outcomemissing
prepdataset(’preprocessed_data.dta’)

The output is as follows. First, we again see all the given inputs. The second part
contains the matching summary. Now, only 29 out of the 61 treated remain in the
matched sample. The number of controls in the matched sample is with 66 larger than
in the first example. This may be the result of the radius matching.

********************************************************************************
************************* flexpaneldid *****************************************
********************************************************************************

outcome: patents
id: cusip
treatment: treatment
time: year
outcome_time_start: .
outcome_time_end: 2
outcome_dev: -2
cemmatching:
statmatcing: , con(employ stckpr return) cat(rndeflt_cat rndstck_cat) radius(0.1)
test:
outcomemissing: outcomemissing
didmodel: didmodel

********************************************************************************
******************** Matching: STAT ********************************************
********************************************************************************

********************************************************************************
**************** flexpaneldid - Matching Summary *******************************
********************************************************************************

NT T

All 165 61
Matched sample 66 29
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Next, the estimation output is displayed. The header summarizes all relevant infor-
mation. Different from the first example, the average number of controls is 4.2. Also
the observed development of the number of patents for treated and controls strongly
differs from the first example – due to the different matching estimator, the different
selection strategy, and different matching variables.

********************************************************************************
**************** Conditional Diff-in-Diff **************************************
********************************************************************************
Average treatment effect for the treated
Estimator : Radius No. of treated obs = 29
Distance metric : Statistical DF No. of unique controls = 66

Mean no. of matches = 4.207

Outcome mean Diff DiD* AI robust z P>|z|
treated controls S.E.

patents -1.3793 -0.7089 -0.6705 2.0218 -0.3316 0.7426

* Consistent bias-corrected estimator as proposed in Abadie & Imbens (2006,2011).

Since we opted for robustness checks, the results of two different specifications of
the standard two-way fixed effects model are returned.32 The first one is the model in
the 2x2 case (meaning for two groups and two times). Here, the outcome development
between the treatment start the specified end time is compared.33 The coefficient of
interest is −2.23706, meaning that the development of the number of patents among the
treated is by 2.24 less than in the control group. From the p-value of 0.162 we would
conclude that this difference is not statistically significant.

32For the estimation we use the xtreg, fe command in Stata, including a constant and time dum-
mies, but no further covariates. The included time dummies are defined according to the dimension of
the time identifier. In our case, the time units are years, and flexpaneldid defines year dummies for
the regression.

33Since the treatment start and duration can vary, we observe more than two years in the estimation
output.
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********************************************************************************
*** Fixed Effects Diff-in-Diff - robustness check of Conditional Diff-in-Diff **
********************************************************************************
xtreg patents i.treated##i.post_treat_dummy_rel_time i.year if post_treat_dummy_rel_time == 2
| first_treatment == year, fe vce(cluster panel_id)
note: 1.treated omitted because of collinearity
Fixed-effects (within) regression Number of obs = 190
Group variable: panel_id Number of groups = 95
R-sq: within = 0.0413 Obs per group: min = 2

between = 0.1197 avg = 2.0
overall = 0.0821 max = 2

F(7,94) = 1.00
corr(u_i, Xb) = 0.2331 Prob > F = 0.4378

(Std. Err. adjusted for 95 clusters in panel_id)

Robust
patents Coef. Std. Err. t P>|t| [95% Conf. Interval]

1.treated 0 (omitted)
2.post_treat_dummy_rel_time 1.79453 3.458088 0.52 0.605 -5.071585 8.660644

treated#post_treat_dummy_rel_time
1 2 -2.23706 1.58742 -1.41 0.162 -5.388919 .9147984

year
75 -1.619814 1.685874 -0.96 0.339 -4.967156 1.727529
76 -1.774941 2.844999 -0.62 0.534 -7.423754 3.873872
77 .0137887 3.506279 0.00 0.997 -6.94801 6.975587
78 -3.732286 4.074362 -0.92 0.362 -11.82203 4.357456
79 -1.230354 3.352732 -0.37 0.714 -7.887283 5.426574

_cons 9.861463 1.039451 9.49 0.000 7.797608 11.92532

sigma_u 19.442247
sigma_e 5.5396632

rho .92491141 (fraction of variance due to u_i)
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The second model estimates the mean treatment effect for the treated within the
classical two-way FE model for the time from the earliest treatment start to two years
after the latest treatment end (since we defined outcometimerelend(2 )). The esti-
mated treatment effect is −0.49, but also not significant – as is indicated by the p-value
of 0.610.

********************************************************************************
**************** Fixed Effects Diff-in-Diff - mean treatment effect ************
********************************************************************************
xtreg patents i.treated##i.post_treat_dummy i.year if post_treat_dummy_rel_time <= 2,
fe vce(cluster panel_id)
note: 1.treated omitted because of collinearity
Fixed-effects (within) regression Number of obs = 637
Group variable: panel_id Number of groups = 95
R-sq: within = 0.0215 Obs per group: min = 5

between = 0.0003 avg = 6.7
overall = 0.0018 max = 8

F(9,94) = 1.31
corr(u_i, Xb) = 0.0116 Prob > F = 0.2409

(Std. Err. adjusted for 95 clusters in panel_id)

Robust
patents Coef. Std. Err. t P>|t| [95% Conf. Interval]

1.treated 0 (omitted)
1.post_treat_dummy .3824173 .8686678 0.44 0.661 -1.342343 2.107178

treated#post_treat_dummy
1 1 -.4891359 .9567283 -0.51 0.610 -2.388742 1.410471

year
73 -.9263158 .5472448 -1.69 0.094 -2.012883 .1602516
74 -.9263158 .5824373 -1.59 0.115 -2.082759 .2301271
75 -1.103654 .625641 -1.76 0.081 -2.345879 .1385714
76 -1.743825 .8542492 -2.04 0.044 -3.439957 -.0476936
77 -1.985287 1.374455 -1.44 0.152 -4.714301 .7437261
78 -2.305253 1.261525 -1.83 0.071 -4.81004 .1995341
79 -1.795019 1.382494 -1.30 0.197 -4.539994 .9499549

_cons 10.7776 .4336799 24.85 0.000 9.916523 11.63869

sigma_u 20.43782
sigma_e 4.4415796

rho .95490128 (fraction of variance due to u_i)

6.4 Example: CEM matching with equal numbers of treated and
controls in the strata including quality tests

Also the last example we base on the stored preprocessing data set. We want to use
a CEM matching with equal numbers of treated and controls within a strata and test
the quality of the matching results. Before we specify the flexpaneldid command, we
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must reload the original data:

use example_data.dta, clear.

Besides the compulsory inputs (depvar, id, treatment, time ), we now select
cemmatching. In this option, we can manually choose strata for the matching vari-
ables – either as a fixed number of equally spaced strata or by explicitely defining
the cutpoints, e. g. cemmatching(employ (#5) stckpr (100 200 300) rnd sales
pats_cat(#0) rndstck_cat(#0)). If no stratification is defined (as is the case for
the outcome development, rnd and sales), the default number of strata (13) is used.
For the categorical variables, we must retain the number of values: pats_cat (#0)
rndstck_cat (#0). See Blackwell et al. (2009) for a more detailed description.

The following command lines sum up all our selections:

flexpaneldid patents, id(cusip ) treatment(treatment ) time(year )
cemmatching(employ (#5) stckpr (100 200 300) rnd sales ...
pats_cat(#0) rndstck_cat(#0) k2k)

outcometimerelend(2 ) outcomedev(-2 ) outcomemissing test
prepdataset(’preprocessed_data.dta’)

The first part of the output again gives a summary of the submitted details. For
reasons of space we omit this display. The output for cemmatching differs from the
statmatching output in that some details of the matching procedure are displayed:
We find the stratification cutpoints for each variable, an alternative matching summary
(containing the number of generated strata, the number of matched strata, the number
of matched and unmatched treated and control units (in terms of observations, not
uniquely identified units)) and the multivariate imbalance as an aggregated quality
measure as well as the variable specific imbalances. Below, we find again the summary
on the number of matched treated and controls (in terms of uniquely identified units
like in the above described examples).

********************************************************************************
******************** Matching: CEM *********************************************
********************************************************************************
Cutpoints:
selection_group: (user)

0
employ: (user)

1

1 .0849999785
2 118.6432178
3 237.2014355
4 355.7596533
5 474.3178711
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stckpr: (user)
1

1 100
2 200
3 300

rnd: (sturges)
1

1 0
2 84.31013997
3 168.6202799
4 252.9304199
5 337.2405599
6 421.5506999
7 505.8608398
8 590.1709798
9 674.4811198

10 758.7912598
11 843.1013997
12 927.4115397
13 1011.72168

sales: (sturges)
1

1 1.221999168
2 2404.420947
3 4807.619895

...

13 28839.60938

pats_cat: (user)
0

rndstck_cat: (user)
0

outcome_dev: (sturges)
1

1 0
2 70.41666667
3 140.8333333

...

13 845

Matching Summary:
-----------------
Number of strata: 948
Number of matched strata: 30

0 1
All 2163 47

Matched 30 30
Unmatched 2133 17

Multivariate L1 distance: .63333333
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Univariate imbalance:
L1 mean min 25% 50% 75% max

selection_group 0 0 0 0 0 0 0
employ .1 -.85613 -.174 .309 .747 2.175 -24.305
stckpr .1 2.795 -.875 1.125 1.75 3.25 27.25

rnd .06667 -1.8587 -.11696 -.02291 .02262 .6408 -46.112
sales .1 -14.339 -5.087 -7.169 -.51901 65.294 -7.374

pats_cat 0 0 0 0 0 0 0
rndstck_cat 0 0 0 0 0 0 0
outcome_dev .13333 .66667 0 1 0 -2 18

********************************************************************************
**************** flexpaneldid - Matching Summary *******************************
********************************************************************************

NT T

All 165 61
Matched sample 26 30

Because we selected the test option, also the information of pstest and the quantile-
quantile plots are displayed.

********************************************************************************
********************************* ps-test **************************************
********************************************************************************

Mean t-test V(T)/
Variable Treated Control %bias t p>|t| V(C)

employ 3.8005 4.6567 -11.3 -0.44 0.663 0.25*
stckpr 12.761 9.9665 21.9 0.85 0.399 2.18*
rnd 1.6609 3.5196 -25.3 -0.98 0.331 0.04*
sales 147.55 161.89 -5.7 -0.22 0.826 0.60
pats_cat 1.4 1.4 0.0 0.00 1.000 1.00
rndstck_cat 2.2667 2.2667 0.0 -0.00 1.000 1.00
outcome_dev 5.3667 4.7 8.7 0.34 0.737 2.26*

* if variance ratio outside [0.48; 2.10]

Ps R2 LR chi2 p>chi2 MeanBias MedBias B R %Var

0.048 3.98 0.782 10.4 8.7 38.2* 0.08* 57

* if B>25%, R outside [0.5; 2]
(30 observations deleted)
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Figure 4: Quantile-quantile plots of the continuous matching variables, example 3

Also for the selected cemmatching, we get a summary of the estimation results. The
output structure is comparable to the above described examples of the statmatching re-
sults. Different from the estimation approach applying the statistical distance function,
the bias correction procedure of Abadie and Imbens (2006, 2011) is not applied.

********************************************************************************
**************** Conditional Diff-in-Diff **************************************
********************************************************************************
Average treatment effect for the treated
Estimator : k2k No. of treated obs = 30
Distance metric : CEM No. of unique controls = 26

Mean no. of matches = 1

Outcome mean Diff DiD S.E z P>|z|
treated controls

patents -1.6000 -0.7333 -0.8667 0.9634 -0.8996 0.3757
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Appendix

Generation of the example data set
We start with a publicly available data set with a similar structure to the one described
in section 2 (see figure 1).

. use http://www.stata.com/data/jwooldridge/eacsap/patent.dta, clear

Based on this, we generate some additional variables. First, we add a fictive treat-
ment variable that can occur within the first five years of the observation period. If
treatment equals zero, this indicates a non-treated unit, treatment = 1 marks the
duration of the fictive treatment of the treated units.

. set seed 13

. gen random = runiform()

. sort random

. gen treatment = 0

. replace treatment = 1 if random>=0.95 & year>=73 & year<=77

. sort cusip year

. replace treatment=1 if random<=0.5 & treatment[_n-1]==1 & year>=73 & year<=77
> & cusip[_n-1]==cusip
. lab var treatment "treatment in 73 to 77"
. drop random
. order cusip year treatment

Additionally, we generate some categorical variables, i. e. we manipulate some of
the existing categorical variables and generate new categorical variables from continuous
ones.

. by cusip: egen merger_cat=max(merger)

. gen sic_cat=2000 if sic>=2000 & sic<2300

. replace sic_cat=2300 if sic>=2300 & sic<2600

. replace sic_cat=2600 if sic>=2600 & sic<2900

. replace sic_cat=2900 if sic>=2900 & sic<3200

. replace sic_cat=3200 if sic>=3200 & sic<3500

. replace sic_cat=3500 if sic>=3500 & sic<3800

. replace sic_cat=3800 if sic>=3800

. lab var sic_cat "sector categories"

. gen pats_cat=0 if patentsg==0

. replace pats_cat=1 if patentsg>=1 & patentsg<=3

. replace pats_cat=2 if patentsg>=4 & patentsg<=9

. replace pats_cat=3 if patentsg>=10 & patentsg<=50

. replace pats_cat=4 if patentsg>=51

. lab var pats_cat "patents categories"

. gen rndstck_cat=0 if rndstck==.

. replace rndstck_cat=1 if rndstck>0 & rndstck<=5

. replace rndstck_cat=2 if rndstck>5 & rndstck<=10
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. replace rndstck_cat=3 if rndstck>10 & rndstck<=15

. replace rndstck_cat=4 if rndstck>15 & rndstck<=20

. replace rndstck_cat=5 if rndstck>20 & rndstck<=40

. replace rndstck_cat=6 if rndstck>40 & rndstck<=60

. replace rndstck_cat=7 if rndstck>60

. lab var rndstck_cat "RnDstock categories"

. gen rndeflt_cat=0 if rndeflt==0

. replace rndeflt_cat=1 if rndeflt>0 & rndeflt<=0.5

. replace rndeflt_cat=2 if rndeflt>0.5 & rndeflt<=1

. replace rndeflt_cat=3 if rndeflt>1 & rndeflt<=5

. replace rndeflt_cat=4 if rndeflt>5 & rndeflt<=10

. replace rndeflt_cat=5 if rndeflt>10

. lab var rndeflt_cat "RnDexpenditures categories"

The result is the dataset ’example_data.dta’ provided at our homepage (https://cloud.iwh-
halle.de/index.php/s/flexpaneldid).
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