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1 Introduction

Credit markets are closely related to aggregate macroeconomic developments, both as a

source and transmitter of economics shocks. However, it is a priori unclear whether these

links are structurally driven by the supply or demand side of credit markets. Mostly after

the �nancial crisis, this has spurred a very active research agenda with new theoretical

macroeconomic models and new causal results in the �nance literature. However, the

empirical macroeconomic literature mostly looks at the interaction between credit mar-

kets and aggregate macroeconomic developments through the lens of either unspeci�ed

credit market �uctuations or credit supply alone, ignoring the potentially important role

of credit demand.1 This paper �lls this gap.

I use a fully-identi�ed Bayesian structural VAR to di�erentiate between credit demand

and credit supply, covering US developments between 1972Q1 and 2023Q1. My model

provides three main results. First, credit demand is much more elastic than credit supply

with respect to all macroeconomic variables but in�ation. This implies that changes in

macroeconomic conditions ceteris paribus result in shifts of the credit market equilibrium

along the credit supply curve. This �nding corroborates a narrative whereby endogenous

shifts of credit demand (i.e., movements along the multidimensional credit curve) explain

a large share of the development on credit markets (Mian and Su�; 2011). It also implies

that policy shocks that target aggregate developments will most likely transmit to credit

markets via credit demand, while policy shocks that aim directly at credit market devel-

opments should focus on shifting credit supply. Second and beyond the endogenous shifts

of credit demand, I �nd a substantial role of credit demand shocks. These shocks are

orthogonal to aggregate demand shocks, which I identify separately in my model. Thus,

they are not related to changes in credit demand for consumption purposes (to name just

1Important theoretical models are, among others, Bernanke and Blinder (1988); Iacoviello and Neri
(2010); Jermann and Quadrini (2012); Christiano et al. (2014); Cúrdia and Woodford (2016); Justiniano
et al. (2019). Selected contributions by the �nance literature are Mian and Su� (2011); DeFusco and
Paciorek (2017); Loutskina and Strahan (2015); Acharya and Ste�en (2020); Li et al. (2020). The
literature using structural VARs includes Meeks (2012); Gambetti and Musso (2017); Mumtaz et al.
(2018); Stock and Watson (2018); Furlanetto et al. (2019); Boivin et al. (2020). To my knowledge, Balke
et al. (2021) is the only paper that explicitly aims at distinguishing credit demand and credit supply
using sign restrictions in a structural VAR.
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one example). Instead, they might stem from unexpected changes in the liquidity needs

of �rms (Bernanke and Blinder; 1988; Li et al.; 2020) or unpredicted changes in collateral

restrictions and corresponding changes in the mortgage demand of households (Justini-

ano et al.; 2019). I �nd that credit demand shocks trigger a short recession on impact,

but result in a more sustained boom period starting one to two years after the shock.

Credit supply shocks, however, create an immediate boom for around three years. The

potential of credit demand shocks to trigger a longer-run boom leads to the third main

result. On average, credit demand shocks are nearly as important for business cycle dy-

namics as credit supply shocks. Credit supply and demand shocks jointly explain around

50% of the variation in output and interest rates, and 60%-80% of variation in credit

market outcomes (loan growth and loan interest spreads). Moreover, credit supply and

demand shocks matter at di�erent times. In the boom-bust cycle around the �nancial

crisis, credit demand shocks mostly contributed to the boom before �nancial crisis, while

credit supply shocks were the dominant force during the crisis. An out-of-sample exercise

further shows that the Covid pandemic induced a large exogenous shift in credit demand

in 2020Q2 (Acharya and Ste�en; 2020; Li et al.; 2020), which helped the US economy to

avoid a stag�ation in 2022 and 2023 by dampening in�ation in 2020 and by facilitating

a faster recovery (credit supply shocks were small and comparably unimportant).

The Bayesian structural VAR contains two credit market equations that complement

a common 3-variable macro model along the lines of Baumeister and Hamilton (2018).

The econometric approach uses prior information on (semi-)elasticities and prior knowl-

edge on the impact e�ect of shocks to directly estimate the structural form of the model

(Baumeister and Hamilton; 2015). I extend this general idea even further, incorporating

prior information on multiple structural shocks coming from multiple external instru-

ments.2 Thus, my approach makes use of many � if not most � sources of existing prior

knowledge to facilitate the identi�cation of the structural VAR model.

As my baseline, I include three instruments. The �rst two are standard in the liter-

2This approach is similar to the analysis of Nguyen (2019), who focuses on a single instrument in his
paper. There have been several alternative approaches to combine traditional identi�cation with external
instruments in Bayesian VAR models (see, e.g. Caldara and Herbst; 2019; Arias et al.; 2021; Giacomini
et al.; 2021; Braun and Brüggemann; 2023).
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ature: high frequency monetary policy surprises controlling for central bank information

e�ects (Miranda-Agrippino; 2016) for monetary policy shocks and the �nancial conditions

index of Jermann and Quadrini (2012) for credit supply shocks. Additionally, I construct

a new granular instrument (Gabaix and Koijen; 2020) for aggregate credit demand shocks.

Speci�cally, I use microeconomic data on mortgages together with a broad set of controls

to obtain a measure of unexpected idiosyncratic US county-level mortgage demand shifts

between 1996Q1 and 2016Q4. The granular nature of counties implies that shocks in

large counties have an outsized and measurable e�ect on the national level. I �nd that

the size-weighted national aggregate of county-level shocks � the so-called granular in-

strument � is about as informative as the credit supply instrument for the identi�cation

of the model.

In the following, I present the three main contributions of the paper step by step. In

section 2, I construct the new granular instrument for credit demand shocks. Section 3

shows how to combine the instrument with a large set of additional prior information to

identify a Bayesian structural VAR. The results of this model, in particular the distinctive

features of credit demand and supply, are presented in section 4, before I conclude.

2 A new granular instrument for credit demand shocks

In order to disentangle credit demand and credit supply at the US level, I �rst develop a

new granular instrument for credit demand shocks (Gabaix and Koijen; 2020) based on

county-level mortgage data between 1996Q1 and 2016Q4. Mortgage data are attractive

because they are the single most important component of aggregate credit (which I de�ne

as loans to households and non-�nancial corporations). On average they account for 68%

(43%) of household (total) loans. They also feature very similar dynamics to aggregate

credit growth, see Appendix Figure A.2. Last, a complete dataset of all US mortgages is

freely available at very disaggregated levels due to the Home Mortgage Disclosure Act.

Granular instruments aggregate residuals from a panel regression to the national level.

This aggregate is a valid instrument if individual units (in my case, US counties) have
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Figure 1: Granular instrument for credit demand

highly unequal sizes, which is indeed the case. Then, shifts to local mortgage demand

curves in large counties have aggregate e�ects. The residuals are also relevant if the

regression controls for all other determinants of local mortgage market outcomes, i.e. if

residuals can be interpreted as unexpected local shifts of mortgage demand.3 Shocks

resulting in such unexpected shifts may encompass, among others, local labor market

shocks, changes to local zoning regulations or changing collateral constraints due to un-

expected house price developments.

Figure 1 plots the time series of the granular mortgage demand instrument for the US.

The instrument suggests that the credit demand curve experienced substantial exogenous

shifts after the dot-com recession and before the �nancial crisis. The positive shocks after

the dot-com recession may be explained by the fact that this recession was much more

local than larger recessions (Baumeister et al.; 2022), allowing for a quick recovery in the

worst-a�ected regions. The negative shifts before the �nancial crisis support the narrative

that subprime borrowers with adjustable-rate mortgages were hit hard by rising interest

rates between 2003 and 2007, triggering an unexpectedly large number of foreclosures.

The following subsections explain in more detail the panel regression I use to estimate

regional mortgage demand shifts, and the features of the data I exploit to construct a

granular instrument from the residuals of that regression.

3Thus, my residuals are not �measures of ignorance�, because I explicitly do not control for contem-
poraneous changes in credit demand.
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2.1 Regional shifts of mortgage demand

In a �rst step, I obtain regional mortgage demand shifts from a panel regression of county-

level mortgage origination. Residuals from this regression are interpreted as regional

mortgage demand shifts after I control for all alternative sources of variation of local

mortgage origination (Gabaix and Koijen; 2020). Thus, I control for predictable shifts of

local mortgage demand and the local e�ects of contemporaneous shocks other than credit

demand shocks. In particular, I run the following regression:

Lit

L̄i

= Xi,t−1β + αi + γt + κiηt +
∑
b

wbiτλbτ + ϵit (1)

The endogenous variable Lit measures mortgage origination by county i and quarter t

after removing seasonal variation at the county level. I express the data relative to their

county-speci�c mean L̄i. The data are available through the Home Mortgage Disclosure

Act, which provides single-loan data. While publicly available data only contain yearly

time stamps, Neil Bhutta reports county-quarter level aggregates on his website using

con�dential time stamps. He restricts the sample to the 500 counties with the highest

mortgage origination volume in any given year, covering around 90% of total US mortgage

origination.4

The set of lagged explanatory variables Xi,t−1 captures all predictable changes of

credit demand.5 The selection of variables follows theoretical arguments: Mortgages are

an important component of a household budget constraint. Moreover, they are limited

by a borrowing constraint, which is a function of household credit worthiness and col-

lateral value (see, for example, Iacoviello and Neri; 2010; Justiniano et al.; 2019). In

the baseline regression, I therefore combine data from three di�erent sources. First, I

cover labor market outcomes through average weekly wages, total quarterly wages, the

4The original data and their description are available on https://sites.google.com/site/

neilbhutta/data. The data also contain information on loan applications. However, it is unclear
whether these o�er a better way to measure mortgage demand because applicants can apply for a mort-
gage at multiple banks. Note that the county composition changes from year to year. The original data
contain a total of 615 di�erent counties, of which I exclude 45 counties due to low data availability.
Appendix A contains additional descriptions and robustness checks.

5Lagged variables may additionally capture predictable changes of credit supply or other structural
relationships. This only strengthens identi�cation.
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number of employed people and the number of establishments from the Quarterly Census

of Employment and Wages (QCEW) by the Bureau of Labor Statistics (BLS). Second,

I supplement this using income per capita and population dynamics from the Bureau of

Economic Analysis (BEA). Third, house-price indices collected by the Federal Housing

Finance Agency (FHFA) describe changes in household wealth.6

County �xed e�ects αi control for systematic county-level di�erences in mortgage

origination, while aggregate (national) shocks are captured through time �xed e�ects

γt. Moreover, I remove the �rst principal component ηt with county-speci�c loadings κi

(Gabaix and Koijen; 2020). There are at least two types of regional variation captured by

this variable. First, it accounts for local di�erences in the endogenous reaction of credit

demand to aggregate developments, which may for example arise from di�erences in local

wealth distributions (Favilukis et al.; 2017). Second, it captures the regionally di�erent

e�ects of national shocks. Important examples are credit supply shocks originating from

changes in national regulation (Loutskina and Strahan; 2015), or international trade

shocks with di�erential regional e�ects (Autor et al.; 2013).

Last, I control for bank-level mortgage supply shocks. This is necessary because the

above-mentioned controls alone would yield residuals that are simultaneously a�ected by

mortgage supply and demand shocks, whereas I am only interested in the latter. With

data at a bank-county-year level, I could separate these two shocks using bank-year �xed

e�ects λbτ as in Khwaja and Mian (2008); Amiti and Weinstein (2018).7 I use the publicly

available HMDA data to add the missing disaggregation by banks to my original data in

three steps, see also Appendix A. First, I calculate the mortgage market share wbiτ of each

bank b in each county i and year τ . Second, I aggregate all variables in my original county-

quarter data to the county-year level by taking the simple sum. Third, I disaggregate

the intermediate county-year data to the bank-county-year level using the market shares

wbiτ . I then proceed to remove bank-year �xed e�ects in these counterfactual data and

6In a robustness check, I also control for di�erent measures of creditworthiness provided by Fannie
Mae and Freddie Mac (FMFM) from 2000 onward. Data from FHFA and FMFM are available at the
3-digit zip-code level. Appendix A describes how I transform these to the appropriate county-level data.

7This approach assumes that bank-level mortgage supply shocks are homogeneous across counties.
Implicit in this assumption is that shocks to bank b only a�ect counties where b has a nonzero market
share. That is, the choice of banks where to operate is independent of how strongly to operate.
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transform the demeaned variables back to the county-quarter level. The key assumption

for this transformation to work is that market shares are independent of other explanatory

variables. That is, I assume that the mortgage portfolios of di�erent banks in the same

county di�er only in size, but not, for example, in the income of borrowers.

2.2 Exploiting granularity to construct the credit demand instru-

ment

In a second step, estimates of idiosyncratic regional mortgage demand shifts ϵ̂it from equa-

tion (1) are aggregated to the national level. In this aggregation, idiosyncratic variation

would cancel largely out if the US counties in my sample were equal in size. However,

this is not the case. Instead, Los Angeles county (the single largest county) accounts for

around 5% of US mortgage origination in every single year, and the 10 largest counties

combined are responsible for around 20% of US mortgages, see also Appendix Figure A.1.

Indeed, the estimate for the Pareto rate is around 0.5 for the counties in my quarterly

sample. This implies a particularly heavy-tailed distribution of county sizes, and thus an

important role of idiosyncratic shocks in large counties for aggregate �uctuations.

Gabaix and Koijen (2020) show that granularity of the data is a su�cient condition

for the validity of granular instruments at the national level. The granular credit demand

instrument zcdt shown in Figure 1 is computed as the di�erence between the size-weighted

and an equal-weighted mean of idiosyncratic regional shocks ϵ̂it. I use average mortgage

origination as weights si as my baseline. The granular instrument is robust to the use of

di�erent weighting schemes in equation (2):

zcdt =
∑
i

L̄iϵ̂it︸ ︷︷ ︸
size-weighted mean

−
∑
i

1

N
ϵ̂it︸ ︷︷ ︸

equal-weighted mean

. (2)
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3 Bayesian inference in a model of credit supply and

demand

I model credit supply and demand as two equations of a medium-sized Bayesian structural

VAR (Baumeister and Hamilton; 2015). The original model identi�es the full structural

model via prior distributions on structural model parameters (i.e., elasticities and semi-

elasticities). I extend this approach by including additional information from external

instruments, one of them being the new granular instrument introduced above.

3.1 Data selection

The structural VAR combines credit market variables with a standard 3-variable macro

model. It is a quarterly model with data from 1972Q1 to 2019Q4 on the following �ve

variables: output gap (yt), in�ation (πt), nominal shadow interest rates (it), growth rates

of private debt (bt) and spreads between loan interest rate and shadow rates (ωt). These

variables form the vector of endogenous variables yt = (yt, πt, it, bt, ωt)
′. I use shadow rates

from Lombardi and Zhu (2018), which are based on a factor model of variables associated

with a broad set of Fed policy instruments, thereby properly capturing unconventional

policy decisions by the Fed during the �nancial crisis.8

3.2 Model description

The �ve model equations are a Philipps curve (denoted by uppercase �s�), an aggregate

demand equation (�d�), a monetary policy rule (�m�), a credit supply function (�cs�) and

a credit demand function (�cd�). All equations feature contemporaneous dependencies

(i.e., elasticities and semi-elasticities) and use m = 4 lags of the endogenous variables

and a constant, combined in the vector xt−1 =
(
y

′
t−1,y

′
t−2, . . . ,y

′
t−m, 1

)′
. Unexpected

8I am grateful to Marco Lombardi for providing me with an update of his shadow rates. During the
Covid recession, the shadow rate drops to -5.0% (2020Q2) and -8.3% (2020Q3). This is consistent with
the unprecedented pace of bond-buying programs by the Fed, and matches the usual policy response to
the severe recession. Results are robust to using the Wu-Xia shadow rate (Wu and Xia; 2016). They
are also robust to alternative identi�cation periods: data prior to the �nancial crisis (1972-2008Q3);
using all data from 1972Q1 to 2023Q1; excluding or down-weighting only the immediate Covid recession
(2020Q1-2020Q2) (Baumeister and Hamilton; 2019; Lenza and Primiceri; 2022).
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shifts of structural relationships are denoted by a structural shock u∗t :

yt =k
s + αs,ππt + αs,bbt + αs,ωωt + [bs]′ xt−1 + ust (AS)

yt =k
d + βd,ππt + βd,iit + βd,bbt + βd,ωωt +

[
bd

]′
xt−1 + udt (AD)

it =k
m + (1− ρ)

[
ψyyt + ψππt + ψbbt + ψωωt

]
+ [bm]′ xt−1 + umt (MP)

bt =k
cs + γcs,yyt + γcs,ππt + γcs,iit + γcs,ωωt + [bcs]′ xt−1 + ucst (CS)

bt =k
cd + δcd,yyt + δcd,ππt + δcd,iit + δcd,ωωt +

[
bcd

]′
xt−1 + ucdt . (CD)

To sharpen identi�cation, I employ three external instruments: First, my own granular

credit demand instrument zcdt , available from 1994Q2 to 2016Q4. Second, informationally

robust monetary policy surprises, zmt , are provided by Miranda-Agrippino (2016) for the

period 1990Q1 to 2009Q4. Third, the �nancial conditions index of Jermann and Quadrini

(2012) serves as instrument for credit supply shocks zcst between 1984Q2 and 2010Q2. I

replace missing instrument values by zero.9 External instruments have been introduced

to structural VAR analysis in a frequentist fashion (Stock and Watson; 2012; Gertler

and Karadi; 2015). However, their use has been mostly constrained by the following

three disadvantages. First, the overwhelming number of applications used one external

instrument to identify impulse-response functions to a single structural shock, leaving the

rest of the model unidenti�ed. Mertens and Ravn (2013) and Mertens and Montiel Olea

(2018) extend frequentist identi�cation to the case of q > 1 instruments for q structural

shocks, albeit at the need of several additional zero restrictions in the model. The second

potential problem has long come from weak (i.e., irrelevant) instruments, which has only

recently been addressed by Montiel Olea et al. (2021). The third major disadvantage

of the frequentist approach is that instrument validity is imposed dogmatically. As an

alternative, instruments can be added to a Bayesian VAR. This has several advantages

over the frequentist model. First, weak instruments are less of a problem (Caldara and

Herbst; 2019). Second, additional information can be used to deal with the case of

multiple instruments, and potentially identify the full structural model (?Giacomini et al.;

9Mymain results are robust to the choice of alternative monetary policy and credit supply instruments.
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2021). Third, there is no need to assume instrument validity as long as the external

instrument is not the only source of information in the corresponding structural equation

(Nguyen; 2019).

In Bayesian SVARs, instruments are directly included in the VAR model. This has the

advantage that instruments also inform the reduced-form VAR coe�cients. Instruments

can be included by adding additional instrument equations to the model (Caldara and

Herbst; 2019; Arias et al.; 2021). However, this is counterintuitive because instruments

are � in essence � external information on the structural model equations. I follow this

principle and include them as exogenous variables in the VAR (Nguyen; 2019).10 The

following instrument equations link the structural shocks directly to the instrument:

umt = χmzmt + vmt ; ucst = χcszcst + vcst ; ucdt = χcdzcdt + vcdt (3)

Equation (3) can be written in matrix notation, ut = Czt + vt. Replacing the vector

of structural shocks, the full structural VAR including instrument becomes

Ayt = Bxt−1 +Czt + vt

⇐⇒ [A −C]
[
y

′

t z
′

t

]′

= Bxt−1 + vt; vt
i.i.d.∼ N (0,D) .

(4)

The lagged structural coe�cients are combined in B =
(
bs bd bm bcs bcd

)′
. The

shocks vt are assumed to follow a normal distribution with mean zero and varianceD. The

combined matrix of structural contemporaneous coe�cients and instrument coe�cients

[A −C] is de�ned as

[A −C] =



1 −αs,π 0 −αs,b −αs,ω

1 −βd,π −βd,i −βd,b −βd,ω

− (1− ρ)ψy − (1− ρ)ψπ 1 − (1− ρ)ψb − (1− ρ)ψω

−γcs,y −γcs,π γcs,i 1 −γcs,ω

−δcd,y −δcd,π −δcd,i 1 −δcd,ω︸ ︷︷ ︸
A

0 0 0

0 0 0

−χm
t 0 0

0 −χcs
t 0

0 0 −χcd
t︸ ︷︷ ︸

−C


.

10Paul (2020) shows that the two-step estimator is equivalent to including the instrument as an ex-
ogenous variable in a frequentist VAR.
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3.3 Bayesian inference using di�erent sources of information

Equation (4) implies that instrument coe�cients C can be treated identical to structural

contemporaneous coe�cients A. This is advantageous because the �ndings of Baumeister

and Hamilton (2015) on the joint posterior distribution of all structural parameters extend

to this case. Namely, we have

p (A,B,C,D|YT ,ZT ) = p (A,C|YT ,ZT )
n∏

i=1

[
γ
(
d−1
ii ;κ

∗
i , τ

∗
i

)
ϕ (bi;m

∗
i , diiM

∗
i )
]
. (5)

Appendix C contains a derivation of the posterior distribution in equation (5), includ-

ing a complete speci�cation of the distribution parameters. The Appendix also provides

a description of the Metropolis-Hastings algorithm used to sample from p (A,C|YT ,ZT ),

and reports convergence statistics. Importantly, the posterior distribution p (A,C|YT ,ZT )

can be sampled independently from B and D, as it depends only on the data and prior

distributions p (A,C), which I specify in the following.

3.4 Prior information on structural contemporaneous coe�cients

The prior distributions for all structural contemporaneous parameters are summarized

in Table 1. In nearly all cases (with the exception of interest rate smoothing ρ), I use

Student t prior distributions. All priors have 3 degrees of freedom and in most cases

a scale of 0.4, as in Baumeister and Hamilton (2018). I deviate from the scale only in

cases where the existing literature shows particularly strong agreement (scale of 0.1) or

disagreement (scale of 1). In the next parts, I describe �rst the prior choices for the

elasticities and semi-elasticities of structural equations, A, focusing in particular on the

new credit supply and credit demand equation. Second, I discuss my priors on instrument

coe�cients C and third, the prior choice on the impact e�ects of structural shocks, A−1.

12



Table 1: Priors for structural contemporaneous coe�cients

Parameter Meaning Prior mode Prior scale Sign restrictions

Student t distribution with 3 degrees of freedom

αs,π E�ect of π on supply 2.00 0.4 αs,π ≥ 0
αs,b E�ect of b on supply 0.80 1
αs,ω E�ect of ω on supply -0.60 0.4 αs,ω ≤ 0
βd,π E�ect of π on demand 0.75 0.4
βd,i E�ect of i on demand -1.00 0.4 βd,i ≤ 0
βd,b E�ect of b on demand 1.00 1
βd,ω E�ect of ω on demand -1.90 0.4 βd,ω ≤ 0
ψy Fed response to y 0.5 0.4 ψy ≥ 0
ψπ Fed response to π 1.5 0.4 ψπ ≥ 0
ψb Fed response to b 0.00 0.4
ψl Fed response to ω 0.00 0.4
γcs,y E�ect of y on credit supply 0.10 0.1 γcs,y ≥ 0
γcs,π E�ect of π on credit supply 0.00 0.4
γcs,i E�ect of i on credit supply -0.75 0.4
γcs,ω E�ect of ω on credit supply 0.20 1 γcs,ω ≥ 0
δcd,y E�ect of y on credit demand -0.20 0.4
δcd,π E�ect of π on credit demand 0.80 0.4
δcd,i E�ect of i on credit demand -0.50 0.4
δcd,ω E�ect of ω on credit demand -1.50 0.4 δcd,ω ≤ 0

χm, χcs, χcd Instrument coe�cients 0 0.4

Beta distribution with α = 2.6 and β = 2.6

ρ Interest rate smoothing 0.5 0.2 0 ≤ ρ ≤ 1

13



3.4.1 Priors on elasticities and semi-elasticities

The credit demand curve should be downward sloping, implying a negative sign for

δcd,ω. Both theory and empirical estimates o�er values in the range of [−2,−1]. Cúrdia

and Woodford (2016) and Christiano et al. (2010) calibrate the semi-elasticity to be

−1.5 and −1.3, respectively.11 Microeconomic data lead to similar values: DeFusco

and Paciorek (2017) estimate a value between −1.5 and −2, using exogenous changes in

nonconforming loan limits for mortgages purchased by Fannie Mae and Freddie Mac, while

Karlan and Zinman (2019) uses random variations of interest rates on small business loans

in Mexico to identify a values of −1.1. An outlier is a DSGE-model �tted to European

data by Gerali et al. (2010), which sets the semi-elasticity to around −3. I restrict δcd,ω

to be negative and set the prior mode to −1.5. This assigns a prior probability of 15%

for values of δcd,ω below −2. Because loan interest rates (and not only spreads) should

be relevant for credit demand, we might assume that the interest rate semi-elasticity

δcd,i should equal δcd,ω. However, the theoretical literature (Christiano et al.; 2010; Fiore

and Tristani; 2013) uses smaller or even positive values, and empirical estimates provide

inconclusive evidence. Therefore, I set the prior mode to −0.5 and keep the parameter

unrestricted. The modes of the remaining parameters in the credit demand curve, δcd,y

and δcd,π, are set to −0.2 and 0.8, respectively (Cúrdia and Woodford; 2016).

The credit supply equation in equation (CS) expresses loan growth depending

on loan interest spreads and macroeconomic conditions. I expect the semi-elasticity of

loans to be positive. Christiano et al. (2010) calibrates γcs,ω around 0.1, consistent with

empirical estimates that lie between 0.05 and 0.2 (Berger and Udell; 2004). However,

Cúrdia and Woodford (2016) argues that the elasticity may be much higher if I account

for intermediation costs. To re�ect the considerable uncertainty, I choose a Student t prior

distribution for γcs,ω with mode 0.2 and wider scale of 1, restricted to be positive. For

the semi-elasticity of credit supply to risk-free interest rates, γcs,i, the empirical literature

provides strong evidence for negative values in the range [−1.5, 0], as lower interest rates

11The semi-elasticity from Cúrdia and Woodford (2016) is a function of deep structural parameters
and variables such as expected future spreads. In my calibration, I use an intertemporal elasticity of
substitution of 0.5. To replace expectations, I proceed as Baumeister and Hamilton (2018), who assume
an AR(1)-process to rewrite expectations as xt+1|t = 0.75xt (see also Doan et al.; 1984).
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impair bank pro�tability and thus loan supply (Jiménez et al.; 2012; Becker and Ivashina;

2014; Abadi et al.; 2023). I set the prior mode for γcs,i to −0.75. I restrict the output

elasticity of credit supply, γcs,y, to be positive, as credit supply should shift outwards

with expectations of a future boom (Christiano et al.; 2010). Very precise estimates of

Jiménez et al. (2012) inform a prior mode of 0.1 and a smaller scale of 0.1. For the last

parameter in the credit supply function, the elasticity of credit supply to in�ation γcs,π,

there is no conclusive evidence in the literature. Therefore, I center the prior distribution

around 0.

Abstracting from the possible role of loan growth and loan interest spreads, the re-

maining three equations are standard. The parameters
{
αs,π, βd,π, βd,i, ψy, ψπ, ρ

}
have

the same prior distributions as Baumeister and Hamilton (2018). The two remaining co-

e�cients αs,b and αs,ω in equation (AS) describe the dependency of aggregate supply

to loan growth and loan interest spread. Cúrdia and Woodford (2016) suggest αs,b = 0.8,

as additional credit facilitates investment (see also Levine and Zervos; 1998). Higher

spreads, on the other hand, should reduce aggregate supply, as both saving and borrow-

ing becomes less attractive. To capture this, I set the mode of αs,ω to −0.6 and restrict

it to be negative (Cúrdia and Woodford; 2016; Fiore and Tristani; 2013).

The aggregate demand equation (AD) is an empirical IS-curve with added loan

growth and interest rate spread. Tighter credit market conditions, measured by higher

loan interest rates, should reduce aggregate demand of both borrowers and savers (Cúrdia

and Woodford; 2016; Fiore and Tristani; 2013; Guerrieri and Lorenzoni; 2017). I set the

prior mode of βd,ω to −1.9 and restrict the coe�cient to be negative. For the elasticity

of aggregate demand to debt, βd,b, I choose a mode of 1 and a wider scale of 1, as the

theoretical value of the parameter is somewhat sensitive to the speci�cation choice in

Cúrdia and Woodford (2016).12

The monetary policy rule is a Taylor-type rule with some degree of interest rate

smoothing as in Baumeister and Hamilton (2018). In the standard Taylor rule, interest

rate decisions only depend on the output gap and in�ation. Thus, they imply a prior

12Dropping the sign restriction on βd,ω, choosing large scales of 5 for (βd,w, βd,ω) or restricting these
two parameters to zero does not materially change results.
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belief that the Fed will not systematically react to variations in the spread and debt

levels. However, there is an active discussion of whether or not central banks should

�lean against the wind� (Svensson; 2017; Gourio et al.; 2018; Adam and Woodford; 2021),

and some empirical evidence that monetary policy takes credit developments into account

(Bachmann and Rüth; 2020). Therefore, I do not set a dogmatic prior of zero, but instead

use a prior distribution with mode 0 and scale 0.4 for ψb and ψω.13

3.4.2 Priors on instrument coe�cients

The assumption of valid instruments implies that every instrument is only correlated with

one of the structural shocks. This is captured by dogmatic zeros for most of the elements

in C, the matrix describing the relation between instruments and shocks. For the three

coe�cients in the instrument equations (χm, χcs, χcd), I specify Student t distribution

with a mode of 0, a scale of 0.4 and 3 degrees of freedom. This prior allows instruments

to be potentially irrelevant, which would result in a posterior distribution equally centered

around zero.

3.4.3 Priors in impact e�ects of structural shocks

In addition to priors on individual structural contemporaneous coe�cients A, I add

additional sources of information on the impact e�ect of structural shocks H = A−1, see

Table 2 for an overview. Priors on impulse response functions take the form of asymmetric

Student t distributions as introduced by Baumeister and Hamilton (2018). In addition

to the standard coe�cients (mode µh, scale σh and νh = 3 degrees of freedom), the

distribution uses a parameter λh to a�ect the skewness of the overall distribution. Thus,

asymmetric Student t distributions can shift probability mass towards a desired sign of

an impulse-response, or even enforce sign restrictions by choosing λh → ±∞.

I choose three types of priors: two informative priors on the reaction of variables to

monetary policy shocks, eight priors on the sign of impact e�ects of structural shocks,

and a regularity prior on det(A). The prior likelihood of the matrix A is the simple sum

13Shifting the prior mode of ψb to 2 to account for some of the empirical evidence does not a�ect the
main results.
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Table 2: Priors on impact e�ects of structural shocks

Prior variable Prior description µh σh λh Sign

Asymmetric Student t priors with 3 degrees of freedom

h1 =
H(1,3)
H(3,3)

Reaction of output gap to a 100bp in-
crease of interest rates

-0.3 0.5 -2

h2 =
H(5,3)
H(3,3)

Reaction of spreads to a 100bp increase
of interest rates

-0.5 0.2 0

h3 = H(1, 3) Output gap to MP shock 0 1 -5000 -
h4 = H(2, 3) In�ation to MP shock 0 1 -5000 -
h5 = H(4, 3) Loan growth to MP shock 0 1 -5000 -
h6 = H(1, 1) Output gap to AS shock 0 1 5000 +
h7 = H(4, 4) Loan growth to CS shock 0 1 5000 +
h8 = H(5, 4) Spread to CS shock 0 1 -5000 -
h9 = H(4, 5) Loan growth to CD shock 0 1 5000 +
h10 = H(5, 5) Spread to CD shock 0 1 5000 +
h11 = detA Regularity condition 6 5 4

of prior likelihoods based on the univariate distributions speci�ed in Tables 1 and 2.

First, I put two priors on the reaction of output and the loan interest spread to a mon-

etary policy contraction that increases interest rates by 1 percentage point (Baumeister

and Hamilton; 2018). I denote these priors by h1 = H(1,3)/H(3,3) and h2 = H(5,3)/H(3,3).

With respect to output, I formulate the prior expectation that output should fall by

roughly 0.3%. This prior can be achieved by an asymmetric Student t distribution with

µh1 = −0.3, σh1 = 0.5 and λh1 = −2, which skews the distribution moderately towards

negative values. An incomplete pass-through of monetary policy shocks to loan interest

rates implies a reaction of spreads between −1 and 0. As I observe interest rate spreads

on existing loans, I choose a symmetric prior with mode µh2 = −0.5 and scale σh2 = 0.2,

allowing for a roughly 10% prior probability that the reaction of the spread falls on either

side of the interval [−1; 0].

Second, I acknowledge the vast literature on sign restrictions of impact e�ects. Re-

strictions on the impact e�ect of a monetary policy shock on output gaps, in�ation and

loan growth (h3 to h5) guard against a prize puzzle. Five additional uncontroversial signs

serve to sharpen identi�cation: (a) the output reaction to an aggregate supply shock (h6),

(b) the impact e�ect of a credit supply shock on credit market variables (h7 and h8) and
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(c) the impact e�ect of a credit demand shock on credit market variables (h9 and h10). I

use asymmetric Student t distributions with µh = 0, σh = 1, νh = 3 and λh = +/− 5000

as priors. They are rather uninformative about the actual size of the reaction, but restrict

the prior distribution to be positive or negative, depending on the sign of λh.

Third, I impose as h11 a regularity prior on det(A), which I calibrate based on the

prior distribution of structural contemporaneous coe�cients in Table 1 (Baumeister and

Hamilton; 2018), again using an asymmetric Student t distribution with a positive skew-

ness without enforcing signs dogmatically.

3.5 Prior information on remaining structural coe�cients

I use a product of independent inverse-gamma distributions for the prior p (D|A) (Baumeis-

ter and Hamilton; 2015). The mean of the prior for d−1
ii is given by 1/ (a′

iSai), where S is

the variance-covariance matrix of residuals from univariate autoregressions with m = 4

lags for the elements of yt. The shape of the prior is κi = 2.

I use the same prior distributions of the lagged structural coe�cients B as in Baumeis-

ter and Hamilton (2018). These priors are conditional Gaussian distributions, indepen-

dent across equations i:

p(B|A,D) =
n∏

i=1

p(bi|A, dii) =
n∏

i=1

N (mi, diiMi).

The vector mi summarizes my best knowledge on the coe�cients bi prior to seeing

the data, and Mi my con�dence in this knowledge. As in Baumeister and Hamilton

(2018), I combine two sources of prior knowledge. First, I use a Minnesota prior with an

autoregressive coe�cient of 0.75, assuming a priori that this AR(1) process provides a

good description of my time series (output gap, in�ation, interest rates, loan growth rates

and loan interest spreads).14 Second, interest rate smoothing ρ leads to an additional prior

for the lagged elements in the monetary policy equation bm. In particular, the coe�cient

of the �rst lag of interest rates should be bm
i = ρ, while all other elements of bm should

be zero. The prior con�dence Mi is speci�ed as in Baumeister and Hamilton (2018).

14See Baumeister and Hamilton (2018) for the exact speci�cation of the Minnesota prior.
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4 Results

In the following, I document the elasticities of credit demand with respect to the other

endogenous variables, and how unexpected credit demand shocks a�ect macroeconomic

aggregates. The identi�cation of these structural forces is driven by informative priors

and the information coming from the exogenous instruments. I then use these insights

disentangle the relative contributions of credit demand and supply to the boom and bust-

cycle around the great �nancial crisis. Last, I run an out-of-sample experiment to show

that the Covid shock induced a strong exogenous expansion of credit demand in 2020Q2,

which contributed strongly to the medium-run recovery until today. I will focus the

discussion in this section mainly on the parts of the model that are most relevant for the

separation of credit demand and credit supply. The remaining model results are closely

related to the ones of Baumeister and Hamilton (2018) and are presented in Appendix

D.

4.1 Structural credit demand and supply equations

Figure 2 plots the posterior distribution of the four contemporaneous coe�cients in the

credit demand equation, δcd,y, δcd,i, δcd,π and δcd,ω. In general, I �nd that the credit de-

mand curve is much more elastic than I expected a priori, speaking to the informativeness

of the data, while credit supply is quite inelastic.

The posterior slope of the credit demand curve has a median of around −2. Because

the semi-elasticity with respect to risk-free interest rates has a median of −0.75 and is

almost certainly negative, I �nd that credit demand is highly responsive to changes in

nominal loan interest rates. The coe�cients on output gap and in�ation show that the

data are not only informative with respect to the degree of elasticity, but also in the

sign of the coe�cient. Credit demand increases endogenously most likely with lower in-

�ation rates and during an economic boom (opposed to the positive/negative prior on

δcd,π/δcd,y). One reason for the procyclicality of credit demand may be the real debt

burden of borrowers, which depends positively on the development of output and which
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Figure 2: Contemporaneous coe�cients in the credit demand equation

Note: Red dashed lines: median prior densities. Blue bars: posterior densities.

may constitute a possible borrowing constraint (Fisher; 1933). Moreover, better eco-

nomic development is associated with rising asset prices, which induces households to

borrow �out-of-wealth� (Bartscher et al.; 2020). Another way to rationalize the inverted

coe�cients on the output and in�ation elasticity is the role of aggregate supply shocks,

as an expansion of aggregate supply may necessitate credit-�nanced investment (see also

Appendix Figure D.6). Credit supply is not very elastic, see Figure 3. This applies in

particular to changes the output gap and risk-free interest rates. However, the in�ation

elasticity of credit supply, γcs,π, is strongly negative.

My results have implications for the credit market equilibrium. I �nd that changes in

the output gap and the shadow rate shift the equilibrium along the credit supply curve,

while changes in in�ation imply a shift along the credit demand curve. These implications

are relevant for economic policy. On the one hand, policy shocks targeting macroeconomic

developments (like monetary or �scal policy shocks) will a�ect credit markets mostly via

shifts in credit demand. Indeed, Appendix Figure D.8 shows that � at least on impact

� monetary policy shocks a�ect credit markets mostly via credit demand. On the other
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Figure 3: Contemporaneous coe�cients in the credit supply equation

Note: Red dashed lines: median prior densities. Blue bars: posterior densities.

hand, policy shocks which focus on credit market developments (such as macroprudential

policy) should be more e�ective if they target credit supply.

4.2 The importance of instruments

Figure 4 plots the posterior distribution of the instrument coe�cients. All three instru-

ments seem to be similarly relevant, with more than 90% of the posterior distribution

being positive. Moreover, the distribution of the credit demand coe�cient, χcd, is robust

to alternative monetary policy or credit supply instruments.

Formally, I can calculate Bayes factors to gauge the relevancy of the instruments,

which indicate that the model with instrument barely outperforms the model without.15

However, instrument relevancy in my Bayesian model likely su�ers because the instru-

ments are unobserved for extended periods of time. To illustrate this issue, I re-estimate

the model with data from 1994Q2 to 2016Q4 (the availability of the credit demand in-

strument). The baseline results remain qualitatively robust. The smaller data sample

15Direct calculations of marginal data densities as in Nguyen (2019) and a comparison via Savage-
Dickey density ratios (Verdinelli and Wasserman; 1995) produce similar results.
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Figure 4: Instrument coe�cients

Note: Red dashed lines: median prior densities. Blue bars: posterior densities.

increases estimation uncertainty, especially for structural lag coe�cients, and thereby

increases the size of credibility sets of impulse response functions. Yet, instrument co-

e�cients are more precisely estimated, see Appendix Figure D.11. Moreover, according

Je�rey's criteria (Kass and Raftery; 1995, as in), Bayes factors provide �very strong�

evidence against the alternative model without any instrument, and �positive� evidence

against the model without credit demand instrument, see Appendix Table 8.16

4.3 The contribution of credit demand and supply to macroeco-

nomic �uctuations

The shape of the structural equations, in particular the elasticities of credit demand and

supply, a�ect impulse-response functions (IRFs) to credit market shocks. The IRFs to

expansionary credit demand shock are very precisely identi�ed, see Figure 5. The steep

16To overcome this issue for the monetary policy equation, I can use Romer-Romer type instruments
from Coibion et al. (2017) instead, which are available from 1972Q1 to 2008Q4. This instrument would
be highly relevant, albeit at the cost of a price puzzle, see Appendix Figures D.9 and D.10 and discussions
by Barakchian and Crowe (2013) and Ramey (2016). All results concerning credit demand and credit
supply remain robust.
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slope of the credit demand curve implies that a shock of 1 percentage point increases loan

growth by only 0.25% (median impact), while loan interest spreads increase by 0.33%.

The e�ect of the shock on credit market variables is strongly muted in general because it

causes a short recession on impact, that is followed by a boom only after 1-2 years. The

reason for this response lies in the endogenous negative e�ect that higher spreads have

on aggregate demand, see the posterior distribution of βd,ω in Appendix Figure D.2. As

output and in�ation go down, the endogenous response of monetary policy implies a lower

shadow rate. That is, loan interest rates (the sum of shadow rates and the spread) increase

on average by 0.1 percentage points on impact. These impulse response functions are in

line with theoretical predictions (Bernanke and Blinder; 1988; Kaplan et al.; 2014), but

contradict the assumption of Gambetti and Musso (2017) that impulse-response functions

of credit and aggregate demand shocks should be similar. However, this assumption �

although not speci�cally spelled out � seems to relate to credit-�nanced consumption.

Instead of this, my credit demand shocks are orthogonal to aggregate demand shocks.

Indeed, the recent empirical literature documents that shocks to the liquidity demand

of �rms simultaneously reduce investment (Li et al.; 2020), and that shocks to debt-to-

income ratios of households negatively a�ect consumption (Teulings et al.; 2023).

A credit supply shock increases loan growth much stronger on impact than a credit

demand shock, and causes a persistent negative response of loan interest spreads. The

�rst reason for this is the relative inelasticity of the credit supply curve. Second, the

shock seems to a�ect the aggregate economy via an increase of aggregate demand, as

it increases both output, in�ation and shadow rates (Mian et al.; 2020). Although the

reaction of shadow rates is less precisely identi�ed, it is interesting that it is substantially

stronger than for credit demand shocks. The reason is that monetary policy endogenously

reacts contractionary to both the economic boom and the increase in loan growth (as in

Caldara and Herbst; 2019; Bachmann and Rüth; 2020, see also Appendix Figure D.3). In

total, these responses con�rm �ndings from the previous literature (Gambetti and Musso;

2017; Mumtaz et al.; 2018).

The impulse-responses in Figures 5 and 6 show that equal-sized credit demand and

23



 Output gap

0 5 10 15 20
-1

-0.5

0

0.5

1

prior
posterior

 Inflation

0 5 10 15 20
-1

-0.5

0

0.5

1
 Shadow rate

0 5 10 15 20
-1

-0.5

0

0.5

1

 Loan growth

0 5 10 15 20
-1

-0.5

0

0.5

1
 Spread

0 5 10 15 20
-1

-0.5

0

0.5

1

Figure 5: Impulse response function, expansionary credit demand shock

Note: Solid blue line: posterior median. Shaded regions: 68% posterior credibility set. Dotted blue lines:
95% posterior credibility set.
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Table 3: Forecast error variance decomposition to di�erent shocks after 8 quarters

supply demand mon. policy credit supply credit demand

Output gap 20.66% 17.46% 14.66% 30.20% 11.47%
(9.37%, 34.42%) (10.32%, 28.48%) (6.52%, 25.31%) (21.52%, 39.00%) (6.36%, 18.66%)

In�ation 53.35% 14.26% 7.19% 8.77% 7.80%
(38.53%, 67.21%) (7.01%, 24.80%) (2.09%, 15.67%) (2.54%, 24.30%) (1.97%, 18.08%)

Shadow rate 4.24% 23.49% 9.00% 48.38% 8.47%
(0.77%, 12.77%) (11.61%, 40.00%) (5.43%, 16.42%) (28.46%, 64.80%) (3.16%, 17.51%)

Loan growth 22.33% 2.56% 3.30% 47.17% 16.76%
(7.52%, 41.87%) (0.63%, 8.10%) (0.77%, 10.25%) (29.07%, 65.53%) (8.22%, 28.66%)

Spread 2.34% 4.42% 9.00% 54.31% 26.09%
(0.62%, 7.07%) (1.64%, 10.78%) (5.39%, 14.01%) (42.69%, 64.80%) (17.24%, 35.85%)

Note: Median forecast error variance decomposition of endogenous variables to structural shocks ut after
8 quarters. Numbers in brackets indicate 95% con�dence sets.

supply shocks have comparably large e�ects on the aggregate economy. This raises the

question whether these shocks are equally important for business cycle dynamics, and

when this has been the case in the past. Table 3 shows that credit supply and credit

demand shocks jointly account for around 40% of the variation of output two years after

the initial shock, for 55% of the variation of shadow rates and for around 60% to 80% of

the variation of credit market variables (the contribution to the forecast error variance

is fairly constant from then on). Credit supply shocks are in general more important,

however, credit demand plays a sizeable role.

Using the impulse response functions, the endogenous variables can be decomposed

into the contributions of past and current structural shocks. These historical decompo-

sitions show if there are speci�c periods during which credit supply or credit demand

are particularly important for the development of endogenous variables. Figures 7 and

8 show the identi�ed structural credit supply and demand shocks (in the �rst subplot)

together with their contributions (remaining subplots). Credit supply contributes partic-

ularly strongly during two subperiods. First, a series of positive credit demand shocks

from 1982Q4 to 1984Q2 (Jayaratne and Strahan; 1996; Mian et al.; 2020, matching a wave

of banking deregulation) contributed to the developments in the 80's. Second, contrac-

tionary credit supply shocks during the �nancial crisis were among the most impactful

shocks in that time. The contribution of credit demand, however, drives the long run

credit cycle from the 90's until the �nancial crisis, especially during the boom from 2003

and 2008. The latter part is explained by a series of expansionary credit demand shocks in

25



 credit demand shock

1975 1980 1985 1990 1995 2000 2005 2010 2015
-10

-5

0

5

10

 Output gap

1975 1980 1985 1990 1995 2000 2005 2010 2015
-10

-5

0

5

10

 Inflation

1975 1980 1985 1990 1995 2000 2005 2010 2015
-10

-5

0

5

10

 Shadow rate

1975 1980 1985 1990 1995 2000 2005 2010 2015
-10

-5

0

5

10

 Loan growth

1975 1980 1985 1990 1995 2000 2005 2010 2015
-10

-5

0

5

10

 Spread

1975 1980 1985 1990 1995 2000 2005 2010 2015
-10

-5

0

5

10

Figure 7: Credit demand shocks and their historical contributions

Note: The �rst subplot contains the time series of identi�ed credit demand shocks, the remaining subplots
their contribution to endogenous variables. Red dashed line: observed data (demeaned). Solid blue line:
posterior median. Shaded regions: 68% posterior credibility set. Dotted blue lines: 95% posterior
credibility set. Recession bars in gray.
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the �rst half of the 2000's, which can be linked to looser collateral constraints (Favilukis

et al.; 2017).

4.4 A counterfactual analysis of the post-2020 recovery

In 2020Q2, the US economy plunged into a deep recession. The output gap dropped to

-11%, in�ation was near zero and renewed quantitative easing reduced the shadow rate to

-5%. These developments were caused by Covid, a �primitive� shock (Ramey; 2016) that

shifts all structural relations simultaneously. For example, we know that aggregate de-

mand and aggregate supply both dropped strongly due to lockdowns, workplace closures

and changes in consumption behavior (Baqaee and Farhi; 2022). Moreover, monetary

policy entered a new phase of quantitative easing, and �scal policy set up large assistance

programs like the paycheck protection program to support lending to �rms. That is,

the Covid shock can be interpreted as the underlying reason for most, if not all, of the

structural shocks in 2020Q2.

With this mapping of the primitive Covid shock onto structural shocks in mind, I

use my identi�ed structural model to investigate the Covid recession in an out-of-sample

exercise for the time period 2020Q1 to 2023Q1. Because these data are not included in

the baseline estimation of the model, the size of shocks and their potential correlation

across structural equations is unproblematic. In addition, I do several robustness checks

with di�erent estimation sample periods to make sure that there is no time-variation in

the structural model parameters.

The macroeconomic developments in 2020Q2 should have implied a strong endogenous

reduction of highly elastic credit demand, and no strong shifts of credit supply. However,

opposed to the predicted endogenous response, there was an uptick of loan growth by

about one percentage point, and a strong increase of the loan interest spread from 3.6%

to 9.3%. This hints at the strong possibility that Covid also induced a large exogenous

increase in credit demand. Indeed, the out-of-sample model predictions imply a positive

credit demand �shock� of about 15% in 2020Q2 � about 13 times the usual standard

27



 credit supply shock

1975 1980 1985 1990 1995 2000 2005 2010 2015
-10

-5

0

5

10

 Output gap

1975 1980 1985 1990 1995 2000 2005 2010 2015
-10

-5

0

5

10

 Inflation

1975 1980 1985 1990 1995 2000 2005 2010 2015
-10

-5

0

5

10

 Shadow rate

1975 1980 1985 1990 1995 2000 2005 2010 2015
-10

-5

0

5

10

 Loan growth

1975 1980 1985 1990 1995 2000 2005 2010 2015
-10

-5

0

5

10

 Spread

1975 1980 1985 1990 1995 2000 2005 2010 2015
-10

-5

0

5

10

Figure 8: Credit supply shocks and their historical contributions

Note: The �rst subplot contains the time series of identi�ed credit demand shocks, the remaining subplots
their contribution to endogenous variables. Red dashed line: observed data (demeaned). Solid blue line:
posterior median. Shaded regions: 68% posterior credibility set. Dotted blue lines: 95% posterior
credibility set. Recession bars in gray.

28



credit demand shock

2018 2019 2020 2021 2022 2023
-10

0

10

20

 Output gap

2018 2019 2020 2021 2022 2023
-15

-10

-5

0

5

 Inflation

2018 2019 2020 2021 2022 2023
0

5

10

15
 Shadow rate

2018 2019 2020 2021 2022 2023
-10

-5

0

5

10

 Loan growth

2018 2019 2020 2021 2022 2023
-10

-5

0

5

10
 Spread

2018 2019 2020 2021 2022 2023
0

5

10

15

Figure 9: Counterfactual development of endogenous variables, assuming no credit de-
mand shift in 2020Q2.

Note: The �rst subplot contains the time series of identi�ed credit demand shocks. To calculate the
counterfactual developments (the remaining subplots), I set the credit demand shock in period 2020Q2
to zero. Red dashed line: observed development of endogenous variables. Solid blue line: counterfactual,
posterior median. Shaded regions: 68% posterior credibility set. Dotted blue lines: 95% posterior
credibility set.

deviation.17 This unusually large credit demand shock did not only stabilize loan growth

during a deep recession. Moreover, it contributed strongly to avoiding a stag�ationary

scenario in the US in 2022 and 2023.

To show this, I run an experiment where I calculate the counterfactual development

of endogenous variables under the assumption that Covid did not shift credit demand

in 2020Q2, while keeping all other structural shocks between 2020Q1 and 2023Q1 as

is. Without the shift in credit demand, I �nd that in�ation would have been higher

than observed for the whole time, with a median increase to 3.5% already in 2020 and

17Not surprisingly, aggregate supply and demand shocks are also unusually large in 2020Q2 and
2020Q3, and I observe a large expansionary monetary policy shock in 2020Q3. Credit supply shocks,
however, are not larger during the Covid recession than during previous episodes. Figure ?? in the
Appendix plots time series of all structural shocks.
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over 7% in 2021. Cumulatively, prices would have increased by 10.9% instead of 6.7%

over those two years. This would have forced monetary policy to be less accomodative

than observed, with a likely lift-o� already in 2021Q2 or 2021Q3. Output gaps would

have been very di�erent under the counterfactual even beyond 2023. Consistent with

the recessionary impact e�ect of credit demand shocks, I �nd that the immediate Covid

recession would likely have been less severe with a negative output gap of only -7.2%.

However, the medium-run recovery would have been severely hampered, with persistently

negative output gaps of -2% to -3% during all of 2022, or about -1.3% to -2% below the

actual output gaps.

The exogenous increase of credit demand, as well as the counterfactual developments,

are consistent with early observations of �rm behavior during March and April 2020. Li

et al. (2020) document that credit demand expanded strongly, as �rms � especially those

with less access to bond and equity �nancing (Acharya and Ste�en; 2020) � drew down

existing credit lines in an e�ort to shore up liquidity and reduced investment.

5 Conclusion

In this paper, I shed additional light on the importance of credit markets for macroeco-

nomic �uctuations by explicitly di�erentiating between credit demand and credit supply.

I investigate both the structural economic equations as well as the resulting structural

shocks. Because my data cover all loans to households and non�nancial �rms, credit de-

mand shocks describe, among other things, unexpected changes in the liquidity demand

of �rms (Li et al.; 2020), or unexpected shifts of collateral constraints (Justiniano et al.;

2019).

I document three key results. First, credit demand is much more elastic than credit

supply with respect to all variables except in�ation. Thus, when macroeconomic shocks

transmit via credit markets to aggregate macroeconomic developments, they do so mostly

via credit demand, rather than credit supply. This is important because it improves the

prediction of the likely e�ects of economic policy shocks. Furthermore, the di�erences
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between the structural equations con�rms the focus of macroprudential policy, which

targets credit market outcomes mostly via regulation of credit supply. Second, expan-

sionary credit demand shocks �rst induce a short recession. The reason for this may

be that increased liquidity demand by �rms reduces investment incentives, or because

larges mortgages increase the debt-to-income ratio of households and reduce consump-

tion (Teulings et al.; 2023). However, after the initial recession, the response to credit

demand shocks is a long and sustained boom. This is the reason for the third main

result. I show that credit demand shocks mattered in particular during the boom before

the �nancial crisis, while credit supply shocks contributed strongly to the recession itself

and the following recovery. Moreover, I document that the Covid pandemic induced a

strong expansionary shift of credit demand in 2020Q2, which mitigated the longer-run

negative impacts of the Covid recession. It strongly contributed to a balanced output

gap in the end of 2021, thereby helping to stave o� a stag�ationary scenario in 2022.

To show these core results, I introduce two methodological novelties to the literature.

First, I extend Bayesian structural VARs (Baumeister and Hamilton; 2015) to the case

where multiple instruments provide information for the identi�cation of multiple struc-

tural shocks. Second, I am the �rst to develop a new granular instrument (Gabaix and

Koijen; 2020) for credit demand shocks based on the variation of mortgages across time

and US regions.
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A Granular instrument for credit demand

In this appendix, I describe in detail my approach to construct the granular instrument for

mortgage demand as in Gabaix and Koijen (2020). Granular instruments use a granularity

condition, whereby shifts ϵit in individual large regions are so important for aggregate

developments that the law of large numbers to fail. In the next subsections, I show �rst

that granularity holds (i.e., region sizes are unequal enough). Second, I present all the

relevant data for and regression residuals from the panel regression (see equation (1) in

the main text)

Lit

L̄i

= Xi,t−1β + αi + γt + κiηt +
∑
b

wbiτλbτ + ϵit.

By controlling for alternative structural explanations, residuals ϵit can be interpreted as

�regional mortgage demand shifts�. I use this in the third subsection, where I present the

aggregation of ϵit to a granular instrument for US credit demand shocks.

A.1 Regional data

A.1.1 Regional mortgage origination

I derive my granular instrument from county-level mortgage originations. Data on these

are provided through the Home Mortgage Disclosure Act (HMDA). By law, �nancial

institutions need to report all mortgage applications and originations on a single-loan

level. Publicly available information on these loans covers the year, county and bank

ID of every loan. In addition, Neil Bhutta � using con�dential information on the exact

date of application or origination � provides total loan origination by county and month

between 1994 and 2016 on his website.18 I use only mortgages that are used for home

purchases, and drop those that re�nance an existing mortgage. His data cover the top

500 counties in a given year in terms of total mortgage originations. These counties are

on average responsible for around 90% of US mortgage originations for home purchases.

Figure A.1 shows the empirical cumulative density function of average mortgage shares,

18The data from HMDA are available through the Consumer Financial Protection Bureau https:

//ffiec.cfpb.gov/. The aggregation of the con�dential data to the county level are available at https:
//sites.google.com/site/neilbhutta/data.
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Figure A.1: Log-log plot of county mortgage share distribution

Note: The plot can be read as an inverse cumulative distribution of mortgage shares. It reports the share
of county-level mortgage origination relative to the US aggregate (averaged over years) on the horizontal
axis and the county rank in the overall distribution on the vertical axis. Black dots refer to all counties
from the publicly available yearly HMDA-datasets. Red dots refer to large counties provided by Neil
Bhutta in his quarterly county-level aggregates.

relative to the US for all counties, displaying the counties in my quarterly sample in red.

There are a few �borderline� counties which are not continuously among the 500 largest

ones. I drop counties for which I only have one or two years of continuous observations.

These observations account for an average of 0.3% of total mortgage originations. In

a second step, I remove seasonal variation in loan originations for every county and

normalize loan originations Lit by the average loan amount L̄i in the same county. The

�nal dataset contains 40'229 county-quarter observations.

A.1.2 Control variables

Household mortgage demand is driven by two main forces. First, mortgages are used

to �nance the acquisition of a house (and consume housing services). Second, they

allow households to extract wealth increases from rising house prices for purposes of

consumption smoothing (Bartscher et al.; 2020). Thus, mortgage demand should be

a�ected both by the budget and the borrowing constraint. The following describes the

de�nition of all control variables combined in Xi,t−1. Table 4 reports summary statistics

of all variables, while Table 5 reports on the data sources. In the panel regression, I add

both the level and the year-on-year growth rates of most control variables. All controls
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Figure A.2: US real loan volume growth and mortgage origination

Note: The �gure compares the real growth rate of loans to households and non�nancial corporations (used
as endogenous variable in the structural VAR) to the aggregate of county-level mortgage originations
(used in the construction of the granular instrument). County-level mortgage originations are scaled to
be comparable to the real growth rate of loans.

are lagged by one quarter.

I derive income per capita and population growth from the population and personal

income statistics by the BEA. The BEA reports yearly information of income per capita

and population for counties, and quarterly aggregate income for states. I use the quar-

terly state-level information (incιt) to distribute county-level personal income per capita

(inc(p.c.)it) and population (popit) over the 4 quarters of the year. Let t be the quarters

in year τ , and i the counties in state ι:

inc(p.c.)it =
incιt∑
t∈τ incιt

inc(p.c.)iτ , popit =
incιt∑
t∈τ incιt

popiτ (6)

I combine the above data with information from the Quarterly Census of Employment and

Wages (QCEW), in particular average weekly wages, total quarterly wages, the number

of employed people and the number of establishments. For these four variables, I remove

seasonal variation in every county. Afterwards, I express quarterly wages, employed

people and number of establishments in per capita terms. All controls based on BEA

and BLS data are available for the full sample of mortgages.

As a third source of information, I make use of publicly available information on

housing markets provided by the Federal Housing Finance Agency (FHFA) and Fannie
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Mae and Freddie Mac (FMFM). The FHFA reports a quarterly house price index at a

3-digit zip-code level, based on sales and appraisals of houses with mortgages insured

by FMFM. The house-price index allows me to control for the wealth-channel described

above. FMFM report the interest rate as well as di�erent measures of credit-worthiness

(�co scores, debt-service-to income ratios and loan-to-value ratios) for all loans they

purchase. I aggregate their single-loan information on a 3-digit zip code level (the smallest

regional aggregation) for every quarter and remove seasonality from all data for every 3-

digit zip code. There are three limiting features on these data. First, data by FMFM start

only in 2000Q1. For this reason, I include the FMFM-based controls only in a robustness

check, �nding no di�erences in the resulting aggregate granular instrument. Second, only

around 25% of my mortgages are purchased by FMFM. However, it is reasonable to

assume that any systematic di�erence between the loan portfolio purchased by FMFM

and the overall sample can be captured by �xed e�ects. Third, data are at a zip-code and

not on the county-level. To match these data, I distribute the information from zip code

j according to population shares over all counties i that it covers. Let sji denote the share

of the population in zip code j living in county i.19 Let vjt denote any of the variables

reported by FMFM or FHFA in zip-code j and quarter t. Then the corresponding value

vit in county i is the weighted mean with weights sji:

vit =
1∑

zip codes j sji

∑
zip codes j

sjivjt , v ∈ {rate, fico, dsti, ltv, hpi} (7)

Here I make the implicit assumption that variable v does not vary systematically across zip

code j. This should be acceptable as the large counties in my dataset usually encompass

(near-)complete zip codes, and should therefore be less a�ected than the smaller counties

which are not part of my data.

In addition to the control variables mentioned above, the publicly available loan-level

HMDA data (which contain information about banks) allow me to remove the in�uence

of bank-level credit supply shocks. To do so, I calculate the market share wbiτ of bank b

19I use time-invariant shares from the 2010 census, as provided by the 2018 version of the Geocorr
project of the Missouri Census Data Center.
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Table 4: Variables, summary statistics

Statistic N Mean St. Dev. Min Max

mortgages.pc 45'572 671.27 471.13 53.36 7'533.06

wages.w 45'572 714.97 207.10 275.08 3'719.61
∆wages.w 45'572 3.06 4.57 −80.90 484.28
wages.q.pc 45'572 4'137.23 2'412.61 553.19 52'185.85
∆wages.q.pc 45'572 3.36 7.38 −90.07 1'113.10
inc.pc 45'572 36'191.29 12'437.40 11'014.86 168'269.00
∆inc.pc 45'572 3.63 3.29 −26.46 72.48
∆pop 45'572 1.33 1.85 −54.30 18.49
employment.pc 45'572 0.43 0.13 0.13 1.57
∆employment.pc 45'572 0.26 2.89 −43.15 144.56
est.count.pc 45'572 0.03 0.01 0.01 0.08
∆est.count.pc 45'572 0.45 3.03 −27.19 103.65
hpi 43'592 161.27 45.43 85.92 435.08
∆hpi 41'612 3.52 6.46 −38.93 43.54
irate 35'672 5.56 1.30 3.14 8.82
fico 35'672 743.26 17.75 638.19 785.19
dsti 35'672 34.41 2.44 16.59 44.52
ltv 35'672 78.77 3.99 43.08 91.17

in county i in year τ . Given these market shares, I model the in�uence of a credit supply

shock to bank b in year τ on mortgage development in county i as wbiτλbτ . Here, λbτ is

a bank-year �xed e�ects that captures the idiosyncratic credit supply shock. This model

rests on the assumption that a credit supply shock at bank b changes the credit supply in

all regions proportional to the engagement of bank b in that region, see also (Khwaja and

Mian; 2008; Amiti and Weinstein; 2018). That is, an increase in credit supply by 10%

has the same relative e�ect in all counties. Implicit in this assumption is that a shock

to bank b only a�ects regions where b is already active (where the market share wbiτ is

nonzero) � that is, I assume that the choice of banks where to operate is independent of

how strongly to operate. The sum
∑

bwbiτλbτ thus models the joint e�ect of shocks to all

banks which are active in county i in year τ .

A.2 Panel estimation of regional mortgage demand

The estimation proceeds in three steps. First, I remove the �xed e�ects through within

transformation, where I introduce a minor adaptation to remove bank-year �xed e�ects, as
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Table 5: Variables and data sources for the estimation of regional credit demand

variable time coverage source level yoy growth

Variable of interest

Mortgage origination, per capita 1994Q1-2016Q4

BEA data∗

Employment, per capita 1990Q1-2019Q4 BEA X X
Population 1990Q1-2019Q4 BEA X

BLS-QCEW data

Total quarterly wages, per capita 1990Q1-2020Q2 BLS X X
Average weekly wage 1990Q1-2020Q2 BLS X X
Establishment count, per capita 1990Q1-2020Q2 BLS X X
Personal income, per capita 1990Q1-2019Q4 BLS X X

FHFA/FMFM data∗∗

House price index 1995Q1-2020Q3 FHFA X X
Interest rate new mortgages 2000Q1-2019Q2 FMFM X
Credit score 2000Q1-2019Q2 FMFM X
Debt-service to income ratio 2000Q1-2019Q2 FMFM X
Loan-to-value ratio 2000Q1-2019Q2 FMFM X

Notes: ∗ County-level data are interpolated from yearly data using state-quarter information on total
personal income. ∗∗ Data are originally at the 3-digit zip code level.
Sources: Mortgage origination for the 500 largest counties comes from Neil Bhuttas website https:

//sites.google.com/site/neilbhutta/data; BEA data are from https://www.bea.gov/data/

gdp/gdp-county-metro-and-other-areas; BLS-QCEW data are from https://www.bls.gov/cew/

downloadable-data-files.htm; FHFA data are from https://www.fhfa.gov/DataTools/Downloads/

Pages/House-Price-Index.aspx; FMFM data are from https://loanperformancedata.fanniemae.

com/lppub/ and http://www.freddiemac.com/research/datasets/sf_loanlevel_dataset.page.

44



these do not correspond directly to the county-quarter level of analysis. Second, I regress

the within-transformed mortgage origination on the set of economic controls. Third, I

remove the �rst principal component from the residual of the second-step regression. The

remaining residual is then interpreted as a idiosyncratic mortgage demand shocks. The

following explains all steps in more detail.

Let ν̂it = κiηt+ϵit be the residuals from the estimation of equation (1) before account-

ing for the role of principal components κiηt. To deal with the comparatively large number

of �xed e�ects, I perform multiple within transformation steps. For the within transfor-

mation of any regression variable vit with respect to the bank-year �xed e�ects λbτ , I use

the fact that market shares in a given county sum to one across banks,
∑

bwbiτ = 1. Let

me de�ne bank-year means v̄bτ of variable v over the regions j ∈ Nbτ in which bank b is

active in year τ :

v̄bτ :=

∑
j∈Nbτ ,t∈τ vjt

4|Nbτ |

Taking the weighted sum of bank-year means ·̄ over banks b active in county i in year

τ , I get

∑
b

wbiτ ȳ
b
bτ =

∑
b

wbiτ

[
X̄bτβ + ᾱbτ + γ̄bτ + λ̄bτ + ϵ̄bτ

]
=

∑
b

wbiτ

[
X̄bτβ +

αi

|Nbτ |
+
γt
4
+ λbτ

] (8)

The di�erence between equation (1) and equation (8) removes bank-year �xed ef-

fects:20

yit −
∑
b

wbiτ ȳbτ =

[
Xit −

∑
b

wbiτX̄bτ

]
β +

[
1−

∑
b

wbiτ

|N |bτ

]
αi +

[
1−

∑
b

wbiτ

4

]
γt + ϵit

=

[
Xit −

∑
b

wbiτX̄bτ

]
β +

[
1−

∑
b

wbiτ

|N |bτ

]
αi +

3

4
γt + νit.

Removing time and region �xed e�ects through further within transformations is

20This can be thought of as a within transformation at the county-bank-quarter level, aggregated over
banks.
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Figure A.3: Histogram of county-level mortgage demand shocks

Note: The histogram refers to residuals from regression (1).

standard. In the second step, I estimate the within-transformed panel regression. The

resulting coe�cient estimates for control variables are reported in Table 6. In the third

step, I remove the �rst principal component ηt and its loading κi from νit. The remaining

residuals ϵit = νit − κiηt are thus free of predictable changes of credit demand (controls

Xit), aggregate shocks (the �xed e�ects), bank-speci�c credit supply shocks (bank-year

�xed e�ects) and aggregate shocks with region-speci�c e�ects (the �rst principal compo-

nent).

A.3 Construction of the GIV

Figure A.3 shows the histogram of residuals of regression 1, which is my main object of

interest. These residuals capture unpredictable changes in county-level mortgage demand.

They feature heavy tails in general, which are slightly more pronounced for negative

residuals.

The estimation residuals ϵ̂it are used to form a granular instrument (Gabaix and

Koijen; 2020). The aggregation takes the form of the di�erence between the size-weighted
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Table 6: Regression results for equation (1)

Dependent variable:

mortgage origination

mortgage origination (lag) 0.954∗∗∗

(0.002)
wages.w 0.0002∗∗∗

(0.00005)
∆wages.w 0.0002

(0.001)
wages.q.pc 0.00001∗

(0.00000)
∆wages.q.pc −0.001∗

(0.001)
inc.pc −0.00000

(0.00000)
∆inc.pc 0.001∗∗∗

(0.001)
∆pop 0.001

(0.001)
employment.pc −0.023

(0.073)
∆employment.pc −0.0002

(0.001)
est.count.pc 0.464

(1.027)
∆est.count.pc 0.0001

(0.001)
hpi −0.001∗∗∗

(0.0001)
∆hpi 0.006∗∗∗

(0.0003)

Observations 40, 229
County �xed e�ects TRUE
Quarter �xed e�ects TRUE
Bank-year �xed e�ects TRUE
R2, within 0.966
R2, overall 0.994

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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and an equal-weighted mean of idiosyncratic (see equation 2 in the main text)

zt =
∑
i

sitϵ̂it︸ ︷︷ ︸
size-weighted mean

−
∑

eiϵ̂it︸ ︷︷ ︸
equal-weighted mean

.

I use average mortgage origination L̄i as size weights sit and equal weights ei = 1/N .

Alternative size weights could be county population or time-varying weights as in Amiti

and Weinstein (2018). An alternative for equal weights would be a heteroscedasticity-

adjusted version proposed by Gabaix and Koijen (2020). I �nd that the choice of the

weighting scheme has no e�ect on the resulting granular instrument.
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B Macroeconomic data

This appendix describes the construction of endogenous variables, plotted in Figure B.1.

I de�ne the output gap yt as 100 times the log di�erence between observed and potential

real GDP as estimated by the congressional budget o�ce. In�ation πt is measured as 100

times the year-on-year log di�erence of the personal consumption expenditures de�ator.

For the nominal shadow interest rate it, I combine the average federal funds rate over

the quarter with data on the shadow interest rate provided by (Lombardi and Zhu;

2018). I choose these data over alternative speci�cations because they are obtained

using many di�erent aspects of US monetary policy and because they are designed to be

valid measures of monetary policy from a macroeconomic perspective. Estimations with

alternative shadow rates lead to similar results.
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Figure B.1: Endogenous variables

Debt growth bt is 100 times the year-on-year log di�erence of loans to the non�nancial

sector. The interest rate spread ωt is the di�erence between a composite lending rate of

the non�nancial sector and the nominal shadow interest rate. For the computation of

loan volumes and the composite lending rate, I follow (Gambetti and Musso; 2017) and

(Mumtaz et al.; 2018). The sources of all underlying series can be found in Table 7.
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There are the following di�erences to the sample computed in (Gambetti and Musso;

2017) (1980Q1-2011Q4): For loan volumes (6) and (8), the denomination of �Municipal

Securities and Loan� is reduced to �Municipal Securities�. For loan volumes (5), the

denomination has changed from �Credit Market Instruments� to �Debt Securities and

Loans�. These changes have minor e�ects. On the interest rate side, the Survey of Terms

of Business Lending (STBL) has been stopped in 2017Q2. In 2018Q1 it has been replaced

by the Small Business Lending Survey (SBLS). However, the two surveys are not well

comparable: the STBL captures the average commercial and industrial lending rates

by domestic banks on existing loans, while the SBLS only covers loan rates on newly

originated loans extended to small businesses. Therefore, I use the (�rst di�erence of

the) bank prime loan rate MPRIME to extend STBL-rates both backward and forward.
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Figure B.2: Instruments, baseline model

I employ a monetary policy and a credit supply instrument in addition to the mort-

gage granular instrument, see Figure B.2. The instrument for monetary policy shocks

stems from Miranda-Agrippino (2016) (denoted MA FF4 ), who remove information from

Greenbook forecasts (the central bank information e�ect) from high-frequency changes of

the fourth federal funds futures around FOMC meeting days. Innovations to the �nancial
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conditions index by Jermann and Quadrini (2012) (denoted as JQ) are a standard instru-

ment for credit supply shocks (Mumtaz et al.; 2018). The index captures the tightness

of �nancing constraints for �rms in an estimated RBC model with �nancial frictions and

�nancial shocks.
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C Econometric model

C.1 Derivation of the posterior distribution

This section derives the posterior distribution for the structural VAR

Ayt = Bxt−1 +Czt + vt

vt
i.i.d.∼ N (0,D) .

using arbitrary prior distributions for A and C. Conditional on these, I use independent

normal-inverse gamma priors B and D. Note that the individual equations (rows) in

B and D are mutually independent conditional on A and C, as the variance-covariance

matrix D is diagonal. The overall prior distribution of the model is thus

p (A,B,C,D) = p (A,C)
n∏

i=1

[
γ
(
d−1
ii ;κi, τi

)
ϕ (bi;mi, diiMi)

]
.

For a characterizations of posterior parameter distributions, I make use of augmented

data for each equation i (Baumeister and Hamilton; 2015; Nguyen; 2019). Let the full

data be denoted by YT ,XT and ZT , and set Pi as the Cholesky decomposition of the

prior variance of B, M−1
i = PiP

′
i:

Ỹi = [aiYT − ciZT m′
iPi]

′

X̃i = [XT Pi]
′ .

Because the instrument coe�cients C can be treated similarly to the structural con-

temporaneous coe�cients A, the following proposition follows directly from Baumeister

and Hamilton (2015):

Proposition 1. If the prior distributions of B andD are de�ned as above, and if residuals

are normally distributed, the posterior distribution of the model can be written as

p (A,B,C,D|YT ,ZT ) = p (A,C|YT ,ZT )
n∏

i=1

[
γ
(
d−1
ii ;κ

∗
i , τ

∗
i

)
ϕ (bi;m

∗
i , diiM

∗
i )
]
.
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Using the estimate of the reduced-form variance-covariance matrix Ω̂T = 1
T

∑T
t=1 ε̂tε̂

′
t and

augmented data, the di�erent terms in the posterior distribution are de�ned as

m∗
i =

(
X̃′

iX̃i

)−1 (
X̃′

iỸi

)
(9)

M∗
i =

(
X̃′

iX̃i

)−1

(10)

ζ∗i =
(
Ỹ′

iỸi

)
−

(
Ỹ′

iX̃i

)(
X̃′

iX̃i

)−1 (
X̃′

iỸi

)
(11)

κ∗i = κi + (T/2) (12)

τ ∗i = τi + (ζ∗i /2) (13)

p (A,C|YT ,ZT ) =
kTp (A,C)

[
det

(
AΩ̂A′

)]T/2
∏n

i=1 [2τ
∗
i /T ]

κ∗
i

n∏
i=1

|M∗
i |1/2

|Mi|1/2
Γ (κ∗i )

Γ (κi)
τκi
i , (14)

where kT is a constant that integrates p (A,C|YT ,ZT ) to unity.

Baumeister and Hamilton (2015) provide a detailed proof for the model without instru-

ments. It rests on showing the following relationship, where the posterior distributions

on the right-hand side are de�ned as in the proposition:

p (A) p (D|A) p (B|A,D) p (YT |A,B,D) = p (YT ) p (A|YT ) p (D|A,YT ) p (B|A,D,YT )

To show a similar result in my case, it su�ces to show that the likelihood of the

instrument is independent of the model parameters. That is, I show that the likelihood

of the data ful�lls

p (YT ,ZT |A,B,C,D) = p (YT |ZT ,A,B,C,D) p(ZT ). (15)

If this is the case, the proof of Proposition ?? follows Baumeister and Hamilton (2015),

with the posterior distributions on the right-hand side conditional on instruments ZT :

p (ZT ) p (A,C) p (D|A,C) p (B|A,C,D) p (YT |ZT ,A,B,C,D)

= p (ZT ) p (YT ) p (A,C|YT ,ZT ) p (D|A,C,YT ,ZT ) p (B|A,C,D,YT ,ZT ) .
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To show the equality in equation (15), I follow Nguyen (2019). Consider that instru-

ments ZT are normally distributed with arbitrary variance-covariance matrix W. That

is, the model in equation (4) can be described by the two equations

Ayt = Czt +Bxt−1 + vt, vt ∼ N (0,D)

zt = wt, wt ∼ N (0,W).

Alternatively, I may write this in compact form

Ăy̆t =

 A −C

0 Iq


 yt

zt

 =

 B

0

xt−1 +

 vt

wt

 = B̆xt−1 + ŭt

ŭt ∼ N
(
0, D̆

)
, D̆ =

 D 0

0 W


The likelihood of the data is

p (YT ,ZT |A,B,C,D,W) =p
(
Y̆T |Ă, B̆, D̆

)
=(2π)−T (n+q)/2

∣∣∣det(Ă)
∣∣∣T ∣∣∣D̆∣∣∣−T/2

× exp

[
−1

2

T∑
t=1

(
Ăy̆t − B̆xt−1

)′
D̆−1

(
Ăy̆t − B̆xt−1

)]
.

Using the three relationships

∣∣∣det(Ă)∣∣∣ = |det (A)| ; |D̆| = |D||W|;
(
D̆
)−1

=

 D−1 0

0 W−1

 ,
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I can split the likelihood into parts associated with YT and ZT and rewrite it as

p (YT ,ZT |A,B,C,D) = (2π)−Tn/2 |det(A)|T |D|−T/2

× exp

[
−1

2

T∑
t=1

(Ayt −Czt −Bxt−1)
′ D−1 (Ayt −Czt −Bxt−1)

]

× (2π)−Tq/2 |W|−T/2 exp

[
−1

2

T∑
t=1

z′tW
−1zt

]

= p (YT |ZT ,A,B,C,D) p (YT |W) .

Bayesian inference on the structural parameters can be based on the conditional like-

lihood p (YT |ZT ,A,B,C,D), if the priors p (A,B,C,D) are independent from the prior

p (W). Among other things, this implies that priors on structural coe�cients should not

be based on information from the instruments. If this is the case, I can also abstract from

W.

C.2 Convergence statistics

As in Baumeister and Hamilton (2015), a new candidate draw for the elements ofA in step

l+1 is generated as θ(l+1) = θ(l)+ξ(V−1)′vl+1, where vl+1 is a 23×1-vector of independent

standard Student t variables with 2 degrees of freedom. For e�cient sampling, the matrix

V should ideally be similar to the scale of the posterior distribution, while ξ is a scalar

tuning parameter that ensures a 30% acceptance probability of retained draws. Other

than in Baumeister and Hamilton (2015, 2018), I cannot analytically calculate the mode

of the posterior likelihood and the Hessian at that point, leaving me without a good

candidate for the scaling matrix V. To overcome this, I run a RWMH-V algorithm with

adaptive tuning parameter (Herbst and Schorfheide; 2016). This alternative algorithm

proceeds in two steps: a pre-sampling with identity scaling matrix returns 100 �nal

draws (keeping every 1'000th draw after a burn-in of 200'000). The variance-covariance

matrix of these draws serves as the scaling matrix of the actual sampling, while the draws

themselves are used as starting values for 100 parallel chains. In every chain, I keep every

100th draw after a burn-in of 100'000 draws. In both sampling steps, I adapt the tuning
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parameter ξ during the burn-in period such that the acceptance probability is 30% for

retained draws.

Figure C.1 and C.2 plots the autocorrelation and retained draws (after burn-in) from

the �rst two chains (exemplary for all) for the coe�cients which have the weakest con-

vergence statistics. We see that the autocorrelation drops quickly, and that the retained

draws seem to cover the full posterior distribution fairly well in all cases. This indicates

that the sampler has indeed converged to the posterior distribution.

Figure C.1: Autocorrelations of draws
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(b) chain 2
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Note: The plots show the autocorrelation across draws (after burn-in) of the structural parameters with

the weakest convergence statistics (per plot), exemplary for the �rst two chains.

Figure C.2: Trace plot of draws

(a) chain 1
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(b) chain 2
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Note: Trace plots of the structural parameters with the weakest convergence statistics (per plot), exem-

plary for the �rst two chains.
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D Further results
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Figure D.1: Contemporaneous coe�cients in the aggregate supply equation

Note: Red dashed lines: median prior densities. Blue bars: posterior densities.

 Inflation d,

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

prior
posterior

 Shadow rate d,i

-3 -2.5 -2 -1.5 -1 -0.5 0
0

0.5

1

1.5

2

 Loan growth d,b

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2
 Spread d,

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
0

0.5

1

1.5

2

Figure D.2: Contemporaneous coe�cients in the aggregate demand equation

Note: Red dashed lines: median prior densities. Blue bars: posterior densities.
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Figure D.3: Contemporaneous coe�cients in the monetary policy equation

Note: Red dashed lines: median prior densities. Blue bars: posterior densities.
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Figure D.4: Monetary policy equation, interest rate smoothing

Note: Red dashed lines: median prior densities. Blue bars: posterior densities.
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Figure D.5: Structural shocks

Note: Solid blue line: posterior median. Shaded regions: 68% posterior credibility set. Dotted blue
lines: 95% posterior credibility set. Recession bars in gray. Data from 2020Q1 onwards are not used to
identify the model.
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Figure D.6: Impulse response function, aggregate supply shock

Note: Solid blue line: posterior median. Shaded regions: 68% posterior credibility set. Dotted blue lines:
95% posterior credibility set.
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Figure D.7: Impulse response function, aggregate demand shock

Note: Solid blue line: posterior median. Shaded regions: 68% posterior credibility set. Dotted blue lines:
95% posterior credibility set.
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Figure D.8: Impulse response function, monetary policy shock

Note: Solid blue line: posterior median. Shaded regions: 68% posterior credibility set. Dotted blue lines:
95% posterior credibility set.
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Figure D.9: Instrument coe�cients, model with Romer-Romer instrument

Note: Red dashed lines: median prior densities. Blue bars: posterior densities.
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Figure D.10: Impulse response function, monetary policy shock identi�ed using Romer-
Romer instrument

Note: Solid blue line: posterior median. Shaded regions: 68% posterior credibility set. Dotted blue lines:
95% posterior credibility set.
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Figure D.11: Instrument coe�cients, estimation sample 1994Q1 to 2016Q4

Note: Red dashed lines: median prior densities. Blue bars: posterior densities.

63



Table 8: Log Bayes factors, comparing a model with instrument vs. the model without

2log(B), 1973Q1-2019Q4 2log(B), 1994Q2-2016Q4

χmp = 0 -1.39 -0.86
χcs = 0 3.17 11.96
χcd = 0 -0.02 4.03
χmp = χcs = χcd = 0 1.35 14.10

Note: Log Bayes factors are calculated as the di�erence between log prior and log posterior densities
that instrument coe�cients χm, χcs, χcd are individually or jointly zero, i.e. values in the �rst row are
calculated as 2log(B) = 2log(p(χi = 0)) − log(p(χi = 0|YT ,ZT )). Je�rey's criteria indicate that values
from 2 to 6 (6 to 10; above 10) provide positive (strong; very strong) evidence against the alternative
model.
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