For How Long Do IMF Forecasts of World Economic Growth Stay Up-to-date?
Katja Heinisch, Axel Lindner
Applied Economics Letters,
Nr. 3,
2019
Abstract
This study analyses the performance of the International Monetary Fund (IMF) World Economic Outlook output forecasts for the world and for both the advanced economies and the emerging and developing economies. With a focus on the forecast for the current year and the next year, we examine the durability of IMF forecasts, looking at how much time has to pass so that IMF forecasts can be improved by using leading indicators with monthly updates. Using a real-time data set for GDP and for indicators, we find that some simple single-indicator forecasts on the basis of data that are available at higher frequency can significantly outperform the IMF forecasts as soon as the publication of the IMF’s Outlook is only a few months old. In particular, there is an obvious gain using leading indicators from January to March for the forecast of the current year.
Artikel Lesen
Expectation Formation, Financial Frictions, and Forecasting Performance of Dynamic Stochastic General Equilibrium Models
Oliver Holtemöller, Christoph Schult
Abstract
In this paper, we document the forecasting performance of estimated basic dynamic stochastic general equilibrium (DSGE) models and compare this to extended versions which consider alternative expectation formation assumptions and financial frictions. We also show how standard model features, such as price and wage rigidities, contribute to forecasting performance. It turns out that neither alternative expectation formation behaviour nor financial frictions can systematically increase the forecasting performance of basic DSGE models. Financial frictions improve forecasts only during periods of financial crises. However, traditional price and wage rigidities systematically help to increase the forecasting performance.
Artikel Lesen
Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment
Katja Heinisch, Rolf Scheufele
Empirical Economics,
Nr. 2,
2018
Abstract
In this paper, we investigate whether there are benefits in disaggregating GDP into its components when nowcasting GDP. To answer this question, we conduct a realistic out-of-sample experiment that deals with the most prominent problems in short-term forecasting: mixed frequencies, ragged-edge data, asynchronous data releases and a large set of potential information. We compare a direct leading indicator-based GDP forecast with two bottom-up procedures—that is, forecasting GDP components from the production side or from the demand side. Generally, we find that the direct forecast performs relatively well. Among the disaggregated procedures, the production side seems to be better suited than the demand side to form a disaggregated GDP nowcast.
Artikel Lesen
Regional, Individual and Political Determinants of FOMC Members' Key Macroeconomic Forecasts
Stefan Eichler, Tom Lähner
Journal of Forecasting,
Nr. 1,
2018
Abstract
We study Federal Open Market Committee members' individual forecasts of inflation and unemployment in the period 1992–2004. Our results imply that Governors and Bank presidents forecast differently, with Governors submitting lower inflation and higher unemployment rate forecasts than bank presidents. For Bank presidents we find a regional bias, with higher district unemployment rates being associated with lower inflation and higher unemployment rate forecasts. Bank presidents' regional bias is more pronounced during the year prior to their elections or for nonvoting bank presidents. Career backgrounds or political affiliations also affect individual forecast behavior.
Artikel Lesen
Predicting Earnings and Cash Flows: The Information Content of Losses and Tax Loss Carryforwards
Sandra Dreher, Sebastian Eichfelder, Felix Noth
Abstract
We analyse the relevance of losses, accounting information on tax loss carryforwards, and deferred taxes for the prediction of earnings and cash flows up to four years ahead. We use a unique hand-collected panel of German listed firms encompassing detailed information on tax loss carryforwards and deferred taxes from the tax footnote. Our out-of-sample predictions show that considering accounting information on tax loss carryforwards and deferred taxes does not enhance the accuracy of performance forecasts and can even worsen performance predictions. We find that common forecasting approaches that treat positive and negative performances equally or that use a dummy variable for negative performance can lead to biased performance forecasts, and we provide a simple empirical specification to account for that issue.
Artikel Lesen