Das IWH auf der Jahrestagung des Vereins für Socialpolitik 2019 "30 Jahre Mauerfall" - Demokratie und Marktwirtschaft
IWH-BROWN-BAG-PANEL "Ost-West-Produktivitätslücke: Ursachen und Folgen" Ostdeutschlands Wirtschaft konnte anfänglich ihre Produktivität gegenüber den westdeutschen Verhältnissen…
Zur Seite
A Comparison of Monthly Global Indicators for Forecasting Growth
Christiane Baumeister, Pierre Guérin
International Journal of Forecasting,
Nr. 3,
2021
Abstract
This paper evaluates the predictive content of a set of alternative monthly indicators of global economic activity for nowcasting and forecasting quarterly world real GDP growth using mixed-frequency models. It shows that a recently proposed indicator that covers multiple dimensions of the global economy consistently produces substantial improvements in forecasting accuracy, while other monthly measures have more mixed success. Specifically, the best-performing model yields impressive gains with MSPE reductions of up to 34% at short horizons and up to 13% at long horizons relative to an autoregressive benchmark. The global economic conditions indicator also contains valuable information for assessing the current and future state of the economy for a set of individual countries and groups of countries. This indicator is used to track the evolution of the nowcasts for the U.S., the OECD area, and the world economy during the COVID-19 pandemic and the main factors that drive the nowcasts are quantified.
Artikel Lesen
Nowcasting East German GDP Growth: a MIDAS Approach
João Carlos Claudio, Katja Heinisch, Oliver Holtemöller
Empirical Economics,
Nr. 1,
2020
Abstract
Economic forecasts are an important element of rational economic policy both on the federal and on the local or regional level. Solid budgetary plans for government expenditures and revenues rely on efficient macroeconomic projections. However, official data on quarterly regional GDP in Germany are not available, and hence, regional GDP forecasts do not play an important role in public budget planning. We provide a new quarterly time series for East German GDP and develop a forecasting approach for East German GDP that takes data availability in real time and regional economic indicators into account. Overall, we find that mixed-data sampling model forecasts for East German GDP in combination with model averaging outperform regional forecast models that only rely on aggregate national information.
Artikel Lesen
Nowcasting East German GDP Growth: a MIDAS Approach
João Carlos Claudio, Katja Heinisch, Oliver Holtemöller
Abstract
Economic forecasts are an important element of rational economic policy both on the federal and on the local or regional level. Solid budgetary plans for government expenditures and revenues rely on efficient macroeconomic projections. However, official data on quarterly regional GDP in Germany are not available, and hence, regional GDP forecasts do not play an important role in public budget planning. We provide a new quarterly time series for East German GDP and develop a forecasting approach for East German GDP that takes data availability in real time and regional economic indicators into account. Overall, we find that mixed-data sampling model forecasts for East German GDP in combination with model averaging outperform regional forecast models that only rely on aggregate national information.
Artikel Lesen
Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment
Katja Heinisch, Rolf Scheufele
Empirical Economics,
Nr. 2,
2018
Abstract
In this paper, we investigate whether there are benefits in disaggregating GDP into its components when nowcasting GDP. To answer this question, we conduct a realistic out-of-sample experiment that deals with the most prominent problems in short-term forecasting: mixed frequencies, ragged-edge data, asynchronous data releases and a large set of potential information. We compare a direct leading indicator-based GDP forecast with two bottom-up procedures—that is, forecasting GDP components from the production side or from the demand side. Generally, we find that the direct forecast performs relatively well. Among the disaggregated procedures, the production side seems to be better suited than the demand side to form a disaggregated GDP nowcast.
Artikel Lesen
Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment
Katja Drechsel, Rolf Scheufele
Abstract
This paper presents a method to conduct early estimates of GDP growth in Germany. We employ MIDAS regressions to circumvent the mixed frequency problem and use pooling techniques to summarize efficiently the information content of the various indicators. More specifically, we investigate whether it is better to disaggregate GDP (either via total value added of each sector or by the expenditure side) or whether a direct approach is more appropriate when it comes to forecasting GDP growth. Our approach combines a large set of monthly and quarterly coincident and leading indicators and takes into account the respective publication delay. In a simulated out-of-sample experiment we evaluate the different modelling strategies conditional on the given state of information and depending on the model averaging technique. The proposed approach is computationally simple and can be easily implemented as a nowcasting tool. Finally, this method also allows retracing the driving forces of the forecast and hence enables the interpretability of the forecast outcome.
Artikel Lesen
Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment
Katja Drechsel, Rolf Scheufele
Abstract
This paper presents a method to conduct early estimates of GDP growth in Germany. We employ MIDAS regressions to circumvent the mixed frequency problem and use pooling techniques to summarize efficiently the information content of the various indicators. More specifically, we investigate whether it is better to disaggregate GDP (either via total value added of each sector or by the expenditure side) or whether a direct approach is more appropriate when it comes to forecasting GDP growth. Our approach combines a large set of monthly and quarterly coincident and leading indicators and takes into account the respective publication delay.
Artikel Lesen