Inference in Structural Vector Autoregressions when the Identifying Assumptions are not Fully Believed: Re-evaluating the Role of Monetary Policy in Economic Fluctuations
Christiane Baumeister, James D. Hamilton
Journal of Monetary Economics,
2018
Abstract
Point estimates and error bands for SVARs that are set identified are only justified if the researcher is persuaded that some parameter values are a priori more plausible than others. When such prior information exists, traditional approaches can be generalized to allow for doubts about the identifying assumptions. We use information about both structural coefficients and impacts of shocks and propose a new asymmetric t-distribution for incorporating information about signs in a nondogmatic way. We apply these methods to a three-variable macroeconomic model and conclude that monetary policy shocks are not the major driver of output, inflation, or interest rates.
Artikel Lesen
Nested Models and Model Uncertainty
Alexander Kriwoluzky, Christian A. Stoltenberg
Scandinavian Journal of Economics,
Nr. 2,
2016
Abstract
Uncertainty about the appropriate choice among nested models is a concern for optimal policy when policy prescriptions from those models differ. The standard procedure is to specify a prior over the parameter space, ignoring the special status of submodels (e.g., those resulting from zero restrictions). Following Sims (2008, Journal of Economic Dynamics and Control 32, 2460–2475), we treat nested submodels as probability models, and we formalize a procedure that ensures that submodels are not discarded too easily and do matter for optimal policy. For the United States, we find that optimal policy based on our procedure leads to substantial welfare gains compared to the standard procedure.
Artikel Lesen