Advances in Using Vector Autoregressions to Estimate Structural Magnitudes

This paper surveys recent advances in drawing structural conclusions from vector autoregressions (VARs), providing a unified perspective on the role of prior knowledge. We describe the traditional approach to identification as a claim to have exact prior information about the structural model and propose Bayesian inference as a way to acknowledge that prior information is imperfect or subject to error. We raise concerns from both a frequentist and a Bayesian perspective about the way that results are typically reported for VARs that are set-identified using sign and other restrictions. We call attention to a common but previously unrecognized error in estimating structural elasticities and show how to correctly estimate elasticities even in the case when one only knows the effects of a single structural shock.

01. June 2024

Authors Christiane Baumeister James D. Hamilton

Whom to contact

For Researchers

Professor Christiane Baumeister, PhD
Professor Christiane Baumeister, PhD
Economist

If you have any further questions please contact me.

Request per E-Mail

For Journalists

Mitglied der Leibniz-Gemeinschaft LogoTotal-Equality-LogoSupported by the BMWK