Step by Step ‒ A Quarterly Evaluation of EU Commission's GDP Forecasts
Katja Heinisch
IWH Discussion Papers,
No. 22,
2024
Abstract
The European Commission’s growth forecasts play a crucial role in shaping policies and provide a benchmark for many (national) forecasters. The annual forecasts are built on quarterly estimates, which do not receive much attention and are hardly known. Therefore, this paper provides a comprehensive analysis of multi-period ahead quarterly GDP growth forecasts for the European Union (EU), euro area, and several EU member states with respect to first-release and current-release data. Forecast revisions and forecast errors are analyzed, and the results show that the forecasts are not systematically biased. However, GDP forecasts for several member states tend to be overestimated at short-time horizons. Furthermore, the final forecast revision in the current quarter is generally downward biased for almost all countries. Overall, the differences in mean forecast errors are minor when using real-time data or pseudo-real-time data and these differences do not significantly impact the overall assessment of the forecasts’ quality. Additionally, the forecast performance varies across countries, with smaller countries and Central and Eastern European countries (CEECs) experiencing larger forecast errors. The paper provides evidence that there is still potential for improvement in forecasting techniques both for nowcasts but also forecasts up to eight quarters ahead. In the latter case, the performance of the mean forecast tends to be superior for many countries.
Read article
Forecast Combination and Interpretability Using Random Subspace
Boris Kozyrev
IWH Discussion Papers,
No. 21,
2024
Abstract
This paper investigates forecast aggregation via the random subspace regressions method (RSM) and explores the potential link between RSM and the Shapley value decomposition (SVD) using the US GDP growth rates. This technique combination enables handling high-dimensional data and reveals the relative importance of each individual forecast. First, it is possible to enhance forecasting performance in certain practical instances by randomly selecting smaller subsets of individual forecasts and obtaining a new set of predictions based on a regression-based weighting scheme. The optimal value of selected individual forecasts is also empirically studied. Then, a connection between RSM and SVD is proposed, enabling the examination of each individual forecast’s contribution to the final prediction, even when there is a large number of forecasts. This approach is model-agnostic (can be applied to any set of predictions) and facilitates understanding of how the aggregated prediction is obtained based on individual forecasts, which is crucial for decision-makers.
Read article
05.09.2024 • 24/2024
Moderate economic growth in the world – German economy continues to stagnate
Production in Germany has been stagnating for two years and is roughly the same level as shortly before the outbreak of the pandemic. Investment of firms is particularly weak. An important reason for fewer investments is the sluggish export business. Private households are also holding back on consumption, mainly due to concerns about the longer-term economic outlook. According to the autumn forecast of the Halle Institute for Economic Research (IWH), gross domestic product in Germany is likely to stagnate in 2024 and to increase by 1.0% in 2025 as capacity utilisation normalises. In June, the IWH forecast had still assumed a growth of 0.3% in 2024 and of 1.5% in 2025. In East Germany, gross domestic product will increase by 0.3% this year and by 0.9% in 2025.
Oliver Holtemöller
Read
Optimal Monetary Policy in a Two-sector Environmental DSGE Model
Oliver Holtemöller, Alessandro Sardone
IWH Discussion Papers,
No. 18,
2024
Abstract
In this paper, we discuss how environmental damage and emission reduction policies affect the conduct of monetary policy in a two-sector (clean and dirty) dynamic stochastic general equilibrium model. In particular, we examine the optimal response of the interest rate to changes in sectoral inflation due to standard supply shocks, conditional on a given environmental policy. We then compare the performance of a nonstandard monetary rule with sectoral inflation targets to that of a standard Taylor rule. Our main results are as follows: first, the optimal monetary policy is affected by the existence of environmental policy (carbon taxation), as this introduces a distortion in the relative price level between the clean and dirty sectors. Second, compared with a standard Taylor rule targeting aggregate inflation, a monetary policy rule with asymmetric responses to sector-specific inflation allows for reduced volatility in the inflation gap, output gap, and emissions. Third, a nonstandard monetary policy rule allows for a higher level of welfare, so the two goals of welfare maximization and emission minimization can be aligned.
Read article
13.06.2024 • 17/2024
German economy still on the defensive – but first signs of an end to the downturn
In the first half of 2024, signs of an economic recovery are increasing. Production, however, is likely to expand only modestly during summer. From the autumn, the recovery is likely to pick up speed with higher real incomes and a modest increase in exports. In its summer forecast, the Halle Institute for Economic Research (IWH) expects gross domestic product to expand by 0.3% in 2024 and by 1.5% in 2025 (East Germany: 0.6% and 1.4%). In March, the IWH forecast had assumed a growth of 0.2% in 2024 and of 1.5% in 2025.
Oliver Holtemöller
Read
Risky Oil: It's All in the Tails
Christiane Baumeister, Florian Huber, Massimiliano Marcellino
NBER Working Paper,
No. 32524,
2024
Abstract
The substantial fluctuations in oil prices in the wake of the COVID-19 pandemic and the Russian invasion of Ukraine have highlighted the importance of tail events in the global market for crude oil which call for careful risk assessment. In this paper we focus on forecasting tail risks in the oil market by setting up a general empirical framework that allows for flexible predictive distributions of oil prices that can depart from normality. This model, based on Bayesian additive regression trees, remains agnostic on the functional form of the conditional mean relations and assumes that the shocks are driven by a stochastic volatility model. We show that our nonparametric approach improves in terms of tail forecasts upon three competing models: quantile regressions commonly used for studying tail events, the Bayesian VAR with stochastic volatility, and the simple random walk. We illustrate the practical relevance of our new approach by tracking the evolution of predictive densities during three recent economic and geopolitical crisis episodes, by developing consumer and producer distress indices that signal the build-up of upside and downside price risk, and by conducting a risk scenario analysis for 2024.
Read article
27.03.2024 • 10/2024
Joint Economic Forecast 1/2024: Headwinds from Germany and abroad: institutes revise forecast significantly downwards
According to Germany’s five leading economic research institutes, the country’s economy shows cyclical and structural weaknesses. In their spring report, they revised their GDP forecast for the current year significantly downward to 0.1%. In the recent fall report, the figure was still 1.3%. Expectations for the coming year are almost unchanged at 1.4% (previously 1.5%). However, the level of economic activity will then be over 30 billion euros lower due to the current weak phase.
Oliver Holtemöller
Read
Forecasting Economic Activity Using a Neural Network in Uncertain Times: Monte Carlo Evidence and Application to the
German GDP
Oliver Holtemöller, Boris Kozyrev
IWH Discussion Papers,
No. 6,
2024
Abstract
In this study, we analyzed the forecasting and nowcasting performance of a generalized regression neural network (GRNN). We provide evidence from Monte Carlo simulations for the relative forecast performance of GRNN depending on the data-generating process. We show that GRNN outperforms an autoregressive benchmark model in many practically relevant cases. Then, we applied GRNN to forecast quarterly German GDP growth by extending univariate GRNN to multivariate and mixed-frequency settings. We could distinguish between “normal” times and situations where the time-series behavior is very different from “normal” times such as during the COVID-19 recession and recovery. GRNN was superior in terms of root mean forecast errors compared to an autoregressive model and to more sophisticated approaches such as dynamic factor models if applied appropriately.
Read article
Does IFRS Information on Tax Loss Carryforwards and Negative Performance Improve Predictions of Earnings and Cash Flows?
Sandra Dreher, Sebastian Eichfelder, Felix Noth
Journal of Business Economics,
January
2024
Abstract
We analyze the usefulness of accounting information on tax loss carryforwards and negative performance to predict earnings and cash flows. We use hand-collected information on tax loss carryforwards and corresponding deferred taxes from the International Financial Reporting Standards tax footnotes for listed firms from Germany. Our out-of-sample tests show that considering accounting information on tax loss carryforwards does not enhance performance forecasts and typically even worsens predictions. The most likely explanation is model overfitting. Besides, common forecasting approaches that deal with negative performance are prone to prediction errors. We provide a simple empirical specification to account for that problem.
Read article
Homepage
German economy in transition ‒ weak momentum, low potential growth The Joint Economic Forecast Project Group forecasts a 0.1% decline in Germany's gross domestic product in 2024.…
See page