Research Clusters
Three Research Clusters Research Cluster "Economic Dynamics and Stability" Research Questions This cluster focuses on empirical analyses of macroeconomic dynamics and stability.…
See page
Projects
Our Projects 07.2022 ‐ 12.2026 Evaluation of the InvKG and the federal STARK programme On behalf of the Federal Ministry of Economics and Climate Protection, the IWH and the RWI…
See page
Department Profiles
Research Profiles of the IWH Departments All doctoral students are allocated to one of the four research departments (Financial Markets – Laws, Regulations and Factor Markets –…
See page
A Comparison of Monthly Global Indicators for Forecasting Growth
Christiane Baumeister, Pierre Guérin
International Journal of Forecasting,
No. 3,
2021
Abstract
This paper evaluates the predictive content of a set of alternative monthly indicators of global economic activity for nowcasting and forecasting quarterly world real GDP growth using mixed-frequency models. It shows that a recently proposed indicator that covers multiple dimensions of the global economy consistently produces substantial improvements in forecasting accuracy, while other monthly measures have more mixed success. Specifically, the best-performing model yields impressive gains with MSPE reductions of up to 34% at short horizons and up to 13% at long horizons relative to an autoregressive benchmark. The global economic conditions indicator also contains valuable information for assessing the current and future state of the economy for a set of individual countries and groups of countries. This indicator is used to track the evolution of the nowcasts for the U.S., the OECD area, and the world economy during the COVID-19 pandemic and the main factors that drive the nowcasts are quantified.
Read article
Conditional Macroeconomic Forecasts: Disagreement, Revisions and Forecast Errors
Alexander Glas, Katja Heinisch
IWH Discussion Papers,
No. 7,
2021
Abstract
Using data from the European Central Bank‘s Survey of Professional Forecasters, we analyse the role of ex-ante conditioning variables for macroeconomic forecasts. In particular, we test to which extent the heterogeneity, updating and ex-post performance of predictions for inflation, real GDP growth and the unemployment rate are related to assumptions about future oil prices, exchange rates, interest rates and wage growth. Our findings indicate that inflation forecasts are closely associated with oil price expectations, whereas expected interest rates are used primarily to predict output growth and unemployment. Expectations about exchange rates and wage growth also matter for macroeconomic forecasts, albeit less so than oil prices and interest rates. We show that survey participants can considerably improve forecast accuracy for macroeconomic outcomes by reducing prediction errors for external conditions. Our results contribute to a better understanding of the expectation formation process of experts.
Read article
Optimizing Policymakers’ Loss Functions in Crisis Prediction: Before, Within or After?
Peter Sarlin, Gregor von Schweinitz
Macroeconomic Dynamics,
No. 1,
2021
Abstract
Recurring financial instabilities have led policymakers to rely on early-warning models to signal financial vulnerabilities. These models rely on ex-post optimization of signaling thresholds on crisis probabilities accounting for preferences between forecast errors, but come with the crucial drawback of unstable thresholds in recursive estimations. We propose two alternatives for threshold setting with similar or better out-of-sample performance: (i) including preferences in the estimation itself and (ii) setting thresholds ex-ante according to preferences only. Given probabilistic model output, it is intuitive that a decision rule is independent of the data or model specification, as thresholds on probabilities represent a willingness to issue a false alarm vis-à-vis missing a crisis. We provide real-world and simulation evidence that this simplification results in stable thresholds, while keeping or improving on out-of-sample performance. Our solution is not restricted to binary-choice models, but directly transferable to the signaling approach and all probabilistic early-warning models.
Read article
Should Forecasters Use Real‐time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence
Katja Heinisch, Rolf Scheufele
German Economic Review,
No. 4,
2019
Abstract
In this paper, we investigate whether differences exist among forecasts using real‐time or latest‐available data to predict gross domestic product (GDP). We employ mixed‐frequency models and real‐time data to reassess the role of surveys and financial data relative to industrial production and orders in Germany. Although we find evidence that forecast characteristics based on real‐time and final data releases differ, we also observe minimal impacts on the relative forecasting performance of indicator models. However, when obtaining the optimal combination of soft and hard data, the use of final release data may understate the role of survey information.
Read article
02.10.2019 • 20/2019
Joint Economic Forecast Autumn 2019: Economy Cools Further – Industry in Recession
Berlin, October 2, 2019 – Germany’s leading economics research institutes have revised their economic forecast for Germany significantly downward. Whereas in the spring they still expected gross domestic product (GDP) to grow by 0.8% in 2019, they now expect GDP growth to be only 0.5%. Reasons for the poor performance are the falling worldwide demand for capital goods – in the exporting of which the Germany economy is specialised – as well as political uncertainty and structural changes in the automotive industry. By contrast, monetary policy is shoring up macroeconomic expansion. For the coming year, the economic researchers have also reduced their forecast of GDP growth to 1.1%, having predicted 1.8% in the spring.
Oliver Holtemöller
Read
Expectation Formation, Financial Frictions, and Forecasting Performance of Dynamic Stochastic General Equilibrium Models
Oliver Holtemöller, Christoph Schult
Historical Social Research,
Special Issue: Governing by Numbers
2019
Abstract
In this paper, we document the forecasting performance of estimated basic dynamic stochastic general equilibrium (DSGE) models and compare this to extended versions which consider alternative expectation formation assumptions and financial frictions. We also show how standard model features, such as price and wage rigidities, contribute to forecasting performance. It turns out that neither alternative expectation formation behaviour nor financial frictions can systematically increase the forecasting performance of basic DSGE models. Financial frictions improve forecasts only during periods of financial crises. However, traditional price and wage rigidities systematically help to increase the forecasting performance.
Read article