Optimizing Policymakers' Loss Functions in Crisis Prediction: Before, Within or After?
Peter Sarlin, Gregor von Schweinitz
Abstract
Early-warning models most commonly optimize signaling thresholds on crisis probabilities. The ex-post threshold optimization is based upon a loss function accounting for preferences between forecast errors, but comes with two crucial drawbacks: unstable thresholds in recursive estimations and an in-sample overfit at the expense of out-of-sample performance. We propose two alternatives for threshold setting: (i) including preferences in the estimation itself and (ii) setting thresholds ex-ante according to preferences only. We provide simulated and real-world evidence that this simplification results in stable thresholds and improves out-of-sample performance. Our solution is not restricted to binary-choice models, but directly transferable to the signaling approach and all probabilistic early-warning models.
Read article
Outperforming IMF Forecasts by the Use of Leading Indicators
Katja Drechsel, Sebastian Giesen, Axel Lindner
IWH Discussion Papers,
No. 4,
2014
Abstract
This study analyzes the performance of the IMF World Economic Outlook forecasts for world output and the aggregates of both the advanced economies and the emerging and developing economies. With a focus on the forecast for the current and the next year, we examine whether IMF forecasts can be improved by using leading indicators with monthly updates. Using a real-time dataset for GDP and for the indicators we find that some simple single-indicator forecasts on the basis of data that are available at higher frequency can significantly outperform the IMF forecasts if the publication of the Outlook is only a few months old.
Read article
Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment
Katja Drechsel, Rolf Scheufele
Abstract
This paper presents a method to conduct early estimates of GDP growth in Germany. We employ MIDAS regressions to circumvent the mixed frequency problem and use pooling techniques to summarize efficiently the information content of the various indicators. More specifically, we investigate whether it is better to disaggregate GDP (either via total value added of each sector or by the expenditure side) or whether a direct approach is more appropriate when it comes to forecasting GDP growth. Our approach combines a large set of monthly and quarterly coincident and leading indicators and takes into account the respective publication delay. In a simulated out-of-sample experiment we evaluate the different modelling strategies conditional on the given state of information and depending on the model averaging technique. The proposed approach is computationally simple and can be easily implemented as a nowcasting tool. Finally, this method also allows retracing the driving forces of the forecast and hence enables the interpretability of the forecast outcome.
Read article
Qual VAR Revisited: Good Forecast, Bad Story
Makram El-Shagi, Gregor von Schweinitz
Abstract
Due to the recent financial crisis, the interest in econometric models that allow to incorporate binary variables (such as the occurrence of a crisis) experienced a huge surge. This paper evaluates the performance of the Qual VAR, i.e. a VAR model including a latent variable that governs the behavior of an observable binary variable. While we find that the Qual VAR performs reasonably well in forecasting (outperforming a probit benchmark), there are substantial identification problems. Therefore, when the economic interpretation of the dynamic behavior of the latent variable and the chain of causality matter, the Qual VAR is inadvisable.
Read article
Does Central Bank Staff Beat Private Forecasters?
Makram El-Shagi, Sebastian Giesen, A. Jung
IWH Discussion Papers,
No. 5,
2012
Abstract
In the tradition of Romer and Romer (2000), this paper compares staff forecasts of the Federal Reserve (Fed) and the European Central Bank (ECB) for inflation and output with corresponding private forecasts. Standard tests show that the Fed and less so the ECB have a considerable information advantage about inflation and output. Using novel tests for conditional predictive ability and forecast stability for the US, we identify the driving forces of the narrowing of the information advantage of Greenbook forecasts coinciding with the Great Moderation.
Read article
The Performance of Short-term Forecasts of the German Economy before and during the 2008/2009 Recession
Katja Drechsel, Rolf Scheufele
International Journal of Forecasting,
No. 2,
2012
Abstract
The paper analyzes the forecasting performance of leading indicators for industrial production in Germany. We focus on single and pooled leading indicator models both before and during the financial crisis. Pairwise and joint significant tests are used to evaluate single indicator models as well as forecast combination methods. In addition, we investigate the stability of forecasting models during the most recent financial crisis.
Read article
Are Qualitative Inflation Expectations Useful to Predict Inflation?
Rolf Scheufele
Journal of Business Cycle Measurement and Analysis,
No. 1,
2011
Abstract
This paper examines the properties of qualitative inflation expectations collected from economic experts for Germany. It describes their characteristics relating to rationality and Granger causality. An out-of-sample simulation study investigates whether this indicator is suitable for inflation forecasting. Results from other standard forecasting models are considered and compared with models employing survey measures. We find that a model using survey expectations outperforms most of the competing models. Moreover, we find some evidence that the survey indicator already contains information from other model types (e. g. Phillips curve models). However, the forecast quality may be further improved by completely taking into account information from some financial indicators.
Read article
Inflation Expectations: Does the Market Beat Professional Forecasts?
Makram El-Shagi
North American Journal of Economics and Finance,
No. 3,
2011
Abstract
The present paper compares expected inflation to (econometric) inflation forecasts based on a number of forecasting techniques from the literature using a panel of ten industrialized countries during the period of 1988 to 2007. To capture expected inflation, we develop a recursive filtering algorithm which extracts unexpected inflation from real interest rate data, even in the presence of diverse risks and a potential Mundell-Tobin-effect.
The extracted unexpected inflation is compared to the forecasting errors of ten
econometric forecasts. Beside the standard AR(p) and ARMA(1,1) models, which
are known to perform best on average, we also employ several Phillips curve based approaches, VAR, dynamic factor models and two simple model avering approaches.
Read article
Flow of Conjunctural Information and Forecast of Euro Area Economic Activity
Katja Drechsel, L. Maurin
Journal of Forecasting,
No. 3,
2011
Abstract
Combining forecasts, we analyse the role of information flow in computing short-term forecasts up to one quarter ahead for the euro area GDP and its main components. A dataset of 114 monthly indicators is set up and simple bridge equations are estimated. The individual forecasts are then pooled, using different weighting schemes. To take into consideration the release calendar of each indicator, six forecasts are compiled successively during the quarter. We found that the sequencing of information determines the weight allocated to each block of indicators, especially when the first month of hard data becomes available. This conclusion extends the findings of the recent literature. Moreover, when combining forecasts, two weighting schemes are found to outperform the equal weighting scheme in almost all cases. Compared to an AR forecast, these improve by more than 40% the forecast performance for GDP in the current and next quarter.
Read article