Banks’ Equity Performance and the Term Structure of Interest Rates
Elyas Elyasiani, Iftekhar Hasan, Elena Kalotychou, Panos K. Pouliasis, Sotiris Staikouras
Financial Markets, Institutions and Instruments,
No. 2,
2020
Abstract
Using an extensive global sample, this paper investigates the impact of the term structure of interest rates on bank equity returns. Decomposing the yield curve to its three constituents (level, slope and curvature), the paper evaluates the time-varying sensitivity of the bank’s equity returns to these constituents by using a diagonal dynamic conditional correlation multivariate GARCH framework. Evidence reveals that the empirical proxies for the three factors explain the variations in equity returns above and beyond the market-wide effect. More specifically, shocks to the long-term (level) and short-term (slope) factors have a statistically significant impact on equity returns, while those on the medium-term (curvature) factor are less clear-cut. Bank size plays an important role in the sense that exposures are higher for SIFIs and large banks compared to medium and small banks. Moreover, banks exhibit greater sensitivities to all risk factors during the crisis and postcrisis periods compared to the pre-crisis period; though these sensitivities do not differ for market-oriented and bank-oriented financial systems.
Read article
Does Machine Learning Help us Predict Banking Crises?
Johannes Beutel, Sophia List, Gregor von Schweinitz
Journal of Financial Stability,
December
2019
Abstract
This paper compares the out-of-sample predictive performance of different early warning models for systemic banking crises using a sample of advanced economies covering the past 45 years. We compare a benchmark logit approach to several machine learning approaches recently proposed in the literature. We find that while machine learning methods often attain a very high in-sample fit, they are outperformed by the logit approach in recursive out-of-sample evaluations. This result is robust to the choice of performance metric, crisis definition, preference parameter, and sample length, as well as to using different sets of variables and data transformations. Thus, our paper suggests that further enhancements to machine learning early warning models are needed before they are able to offer a substantial value-added for predicting systemic banking crises. Conventional logit models appear to use the available information already fairly efficiently, and would for instance have been able to predict the 2007/2008 financial crisis out-of-sample for many countries. In line with economic intuition, these models identify credit expansions, asset price booms and external imbalances as key predictors of systemic banking crises.
Read article
The Regional Effects of a Place-based Policy – Causal Evidence from Germany
Matthias Brachert, Eva Dettmann, Mirko Titze
Regional Science and Urban Economics,
November
2019
Abstract
The German government provides discretionary investment grants to structurally weak regions in order to reduce regional inequality. We use a regression discontinuity design that exploits an exogenous discrete jump in the probability of regional actors to receive investment grants to identify the causal effects of the policy. We find positive effects of the programme on district-level gross value-added and productivity growth, but no effects on employment and gross wage growth.
Read article
Should Forecasters Use Real‐time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence
Katja Heinisch, Rolf Scheufele
German Economic Review,
No. 4,
2019
Abstract
In this paper, we investigate whether differences exist among forecasts using real‐time or latest‐available data to predict gross domestic product (GDP). We employ mixed‐frequency models and real‐time data to reassess the role of surveys and financial data relative to industrial production and orders in Germany. Although we find evidence that forecast characteristics based on real‐time and final data releases differ, we also observe minimal impacts on the relative forecasting performance of indicator models. However, when obtaining the optimal combination of soft and hard data, the use of final release data may understate the role of survey information.
Read article
College Choice, Selection, and Allocation Mechanisms: A Structural Empirical Analysis
J.-R. Carvalho, T. Magnac, Qizhou Xiong
Quantitative Economics,
No. 3,
2019
Abstract
We use rich microeconomic data on performance and choices of students at college entry to analyze interactions between the selection mechanism, eliciting college preferences through exams, and the allocation mechanism. We set up a framework in which success probabilities and student preferences are shown to be identified from data on their choices and their exam grades under exclusion restrictions and support conditions. The counterfactuals we consider balance the severity of congestion and the quality of the match between schools and students. Moving to deferred acceptance or inverting the timing of choices and exams are shown to increase welfare. Redistribution among students and among schools is also sizeable in all counterfactual experiments.
Read article
09.07.2019 • 17/2019
IWH rated "very good" and recommended for further funding
The Halle Institute for Economic Research (IWH) – Member of the Leibniz Association has been providing remarkable research and policy advice services for many years and should therefore continue to receive joint basic funding by Federal government and the Länder in future. This was the conclusion of today's meeting of the Senate of the Leibniz Association. At the end of the evaluation, the Institute was rated "very good" in all areas.
Reint E. Gropp
Read
An Evaluation of Early Warning Models for Systemic Banking Crises: Does Machine Learning Improve Predictions?
Johannes Beutel, Sophia List, Gregor von Schweinitz
Abstract
This paper compares the out-of-sample predictive performance of different early warning models for systemic banking crises using a sample of advanced economies covering the past 45 years. We compare a benchmark logit approach to several machine learning approaches recently proposed in the literature. We find that while machine learning methods often attain a very high in-sample fit, they are outperformed by the logit approach in recursive out-of-sample evaluations. This result is robust to the choice of performance measure, crisis definition, preference parameter, and sample length, as well as to using different sets of variables and data transformations. Thus, our paper suggests that further enhancements to machine learning early warning models are needed before they are able to offer a substantial value-added for predicting systemic banking crises. Conventional logit models appear to use the available information already fairly effciently, and would for instance have been able to predict the 2007/2008 financial crisis out-of-sample for many countries. In line with economic intuition, these models identify credit expansions, asset price booms and external imbalances as key predictors of systemic banking crises.
Read article
Zu den rentenpolitischen Plänen im Koalitionsvertrag 2018 von CDU, CSU und SPD: Konsequenzen, Finanzierungsoptionen und Reformbedarf
Oliver Holtemöller, Christoph Schult, Götz Zeddies
Zeitschrift für Wirtschaftspolitik,
No. 3,
2018
Abstract
In the coalition agreement from February 7, 2018, the new German federal government drafts its public pension policy, which has to be evaluated against the background of demographic dynamics in Germany. In this paper, the consequences of public pensions related policy measures for the German public pension insurance are illustrated using a simulation model. In the long run, the intended extensions of benefits would lead to an increase in the contribution rate to the German public pension insurance of about two and a half percentage points. Referring to pension systems of other countries, we discuss measures in order to limit this increase in the contribution rate.
Read article
Inference in Structural Vector Autoregressions when the Identifying Assumptions are not Fully Believed: Re-evaluating the Role of Monetary Policy in Economic Fluctuations
Christiane Baumeister, James D. Hamilton
Journal of Monetary Economics,
2018
Abstract
Point estimates and error bands for SVARs that are set identified are only justified if the researcher is persuaded that some parameter values are a priori more plausible than others. When such prior information exists, traditional approaches can be generalized to allow for doubts about the identifying assumptions. We use information about both structural coefficients and impacts of shocks and propose a new asymmetric t-distribution for incorporating information about signs in a nondogmatic way. We apply these methods to a three-variable macroeconomic model and conclude that monetary policy shocks are not the major driver of output, inflation, or interest rates.
Read article
Housing Consumption and Macroprudential Policies in Europe: An Ex Ante Evaluation
Antonios Mavropoulos, Qizhou Xiong
IWH Discussion Papers,
No. 17,
2018
Abstract
In this paper, we use the panel of the first two waves of the Household Finance and Consumption Survey by the European Central Bank to study housing demand of European households and evaluate potential housing market regulations in the post-crisis era. We provide a comprehensive account of the housing decisions of European households between 2010 and 2014, and structurally estimate the housing preference of a simple life-cycle housing choice model. We then evaluate the effect of a tighter LTV/LTI regulation via counter-factual simulations. We find that those regulations limit homeownership and wealth accumulation, reduces housing consumption but may be welfare improving for the young households.
Read article