Forecasting Economic Activity Using a Neural Network in Uncertain Times: Monte Carlo Evidence and Application to the
German GDP
Oliver Holtemöller, Boris Kozyrev
IWH Discussion Papers,
No. 6,
2024
Abstract
In this study, we analyzed the forecasting and nowcasting performance of a generalized regression neural network (GRNN). We provide evidence from Monte Carlo simulations for the relative forecast performance of GRNN depending on the data-generating process. We show that GRNN outperforms an autoregressive benchmark model in many practically relevant cases. Then, we applied GRNN to forecast quarterly German GDP growth by extending univariate GRNN to multivariate and mixed-frequency settings. We could distinguish between “normal” times and situations where the time-series behavior is very different from “normal” times such as during the COVID-19 recession and recovery. GRNN was superior in terms of root mean forecast errors compared to an autoregressive model and to more sophisticated approaches such as dynamic factor models if applied appropriately.
Read article
HIP, RIP, and the Robustness of Empirical Earnings Processes
Florian Hoffmann
Quantitative Economics,
No. 3,
2019
Abstract
The dispersion of individual returns to experience, often referred to as heterogeneity of income profiles (HIP), is a key parameter in empirical human capital models, in studies of life‐cycle income inequality, and in heterogeneous agent models of life‐cycle labor market dynamics. It is commonly estimated from age variation in the covariance structure of earnings. In this study, I show that this approach is invalid and tends to deliver estimates of HIP that are biased upward. The reason is that any age variation in covariance structures can be rationalized by age‐dependent heteroscedasticity in the distribution of earnings shocks. Once one models such age effects flexibly the remaining identifying variation for HIP is the shape of the tails of lag profiles. Credible estimation of HIP thus imposes strong demands on the data since one requires many earnings observations per individual and a low rate of sample attrition. To investigate empirically whether the bias in estimates of HIP from omitting age effects is quantitatively important, I thus rely on administrative data from Germany on quarterly earnings that follow workers from labor market entry until 27 years into their career. To strengthen external validity, I focus my analysis on an education group that displays a covariance structure with qualitatively similar properties like its North American counterpart. I find that a HIP model with age effects in transitory, persistent and permanent shocks fits the covariance structure almost perfectly and delivers small and insignificant estimates for the HIP component. In sharp contrast, once I estimate a standard HIP model without age‐effects the estimated slope heterogeneity increases by a factor of thirteen and becomes highly significant, with a dramatic deterioration of model fit. I reach the same conclusions from estimating the two models on a different covariance structure and from conducting a Monte Carlo analysis, suggesting that my quantitative results are not an artifact of one particular sample.
Read article
Impulse Response Analysis in a Misspecified DSGE Model: A Comparison of Full and Limited Information Techniques
Sebastian Giesen, Rolf Scheufele
Applied Economics Letters,
No. 3,
2016
Abstract
In this article, we examine the effect of estimation biases – introduced by model misspecification – on the impulse responses analysis for dynamic stochastic general equilibrium (DSGE) models. Thereby, we use full and limited information estimators to estimate a misspecified DSGE model and calculate impulse response functions (IRFs) based on the estimated structural parameters. It turns out that IRFs based on full information techniques can be unreliable under misspecification.
Read article
Effects of Incorrect Specification on the Finite Sample Properties of Full and Limited Information Estimators in DSGE Models
Sebastian Giesen, Rolf Scheufele
Journal of Macroeconomics,
June
2016
Abstract
In this paper we analyze the small sample properties of full information and limited information estimators in a potentially misspecified DSGE model. Therefore, we conduct a simulation study based on a standard New Keynesian model including price and wage rigidities. We then study the effects of omitted variable problems on the structural parameter estimates of the model. We find that FIML performs superior when the model is correctly specified. In cases where some of the model characteristics are omitted, the performance of FIML is highly unreliable, whereas GMM estimates remain approximately unbiased and significance tests are mostly reliable.
Read article
Effects of Incorrect Specification on the Finite Sample Properties of Full and Limited Information Estimators in DSGE Models
Sebastian Giesen, Rolf Scheufele
Abstract
In this paper we analyze the small sample properties of full information and limited information estimators in a potentially misspecified DSGE model. Therefore, we conduct a simulation study based on a standard New Keynesian model including price and wage rigidities. We then study the effects of omitted variable problems on the structural parameters estimates of the model. We find that FIML performs superior when the model is correctly specified. In cases where some of the model characteristics are omitted, the performance of FIML is highly unreliable, whereas GMM estimates remain approximately unbiased and significance tests are mostly reliable.
Read article
Testing for Structural Breaks at Unknown Time: A Steeplechase
Makram El-Shagi, Sebastian Giesen
Computational Economics,
No. 1,
2013
Abstract
This paper analyzes the role of common data problems when identifying structural breaks in small samples. Most notably, we survey small sample properties of the most commonly applied endogenous break tests developed by Brown et al. (J R Stat Soc B 37:149–163, 1975) and Zeileis (Stat Pap 45(1):123–131, 2004), Nyblom (J Am Stat Assoc 84(405):223–230, 1989) and Hansen (J Policy Model 14(4):517–533, 1992), and Andrews et al. (J Econ 70(1):9–38, 1996). Power and size properties are derived using Monte Carlo simulations. We find that the Nyblom test is on par with the commonly used F type tests in a small sample in terms of power. While the Nyblom test’s power decreases if the structural break occurs close to the margin of the sample, it proves far more robust to nonnormal distributions of the error term that are found to matter strongly in small samples although being irrelevant asymptotically for all tests that are analyzed in this paper.
Read article
Has the Euro Increased International Price Elasticities?
Oliver Holtemöller, Götz Zeddies
IWH Discussion Papers,
No. 18,
2010
published in: Empirica
Abstract
This paper analyzes the role of common data problems when identifying structural breaks in small samples. Most notably, we survey small sample properties of the most commonly applied endogenous break tests developed by Brown, Durbin, and Evans (1975) and Zeileis (2004), Nyblom (1989) and Hansen (1992), and Andrews, Lee, and Ploberger (1996). Power and size properties are derived using Monte Carlo simulations. Results emphasize that mostly the CUSUM type tests are affected by the presence of heteroscedasticity, whereas the individual parameter Nyblom test and AvgLM test are proved to be highly robust. However, each test is significantly affected by leptokurtosis. Contrarily to other tests, where skewness is far more problematic than kurtosis, it has no additional effect for any of the endogenous break tests we analyze. Concerning overall robustness the Nyblom test performs best, while being almost on par to more recently developed tests in terms of power.
Read article
Testing for Structural Breaks at Unknown Time: A Steeplechase
Makram El-Shagi, Sebastian Giesen
Abstract
This paper analyzes the role of common data problems when identifying structural breaks in small samples. Most notably, we survey small sample properties of the most commonly applied endogenous break tests developed by Brown, Durbin, and Evans (1975) and Zeileis (2004), Nyblom (1989) and Hansen (1992), and Andrews, Lee, and Ploberger (1996). Power and size properties are derived using Monte Carlo simulations. Results emphasize that mostly the CUSUM type tests are affected by the presence of heteroscedasticity, whereas the individual parameter Nyblom test and AvgLM test are proved to be highly robust. However, each test is significantly affected by leptokurtosis. Contrarily to other tests, where skewness is far more problematic than kurtosis, it has no additional effect for any of the endogenous break tests we analyze. Concerning overall robustness the Nyblom test performs best, while being almost on par to more recently developed tests in terms of power.
Read article
Kostenkalkulation unter Einbeziehung von Kosten der Risikotragung am Beispiel eines Bauunternehmens
Henry Dannenberg
Controller Magazin Bd. 32 (1),
No. 1,
2007
Abstract
Der Beitrag zeigt am Beispiel eines Bauunternehmens, wie die Kosten der Risikotragung bestimmt und in der Projektkalkulation berücksichtigt werden können. Hierfür wird für ein fiktives Bauunternehmen die Risikosituation analysiert und dargestellt, wie unter Verwendung einer Monte-Carlo-Simulation relevante Risikokennzahlen abgeleitet werden können.
Read article
A note on GMM-estimation of probit models with endogenous regressors
Joachim Wilde
IWH Discussion Papers,
No. 4,
2005
Abstract
Dagenais (1999) and Lucchetti (2002) have demonstrated that the naive GMM estimator of Grogger (1990) for the probit model with an endogenous regressor is not consistent. This paper completes their discussion by explaining the reason for the inconsistency and presenting a natural solution. Furthermore, the resulting GMM estimator is analyzed in a Monte-Carlo simulation and compared with alternative estimators.
Read article