Forecast Combination and Interpretability Using Random Subspace
Boris Kozyrev
IWH Discussion Papers,
No. 21,
2024
Abstract
This paper investigates forecast aggregation via the random subspace regressions method (RSM) and explores the potential link between RSM and the Shapley value decomposition (SVD) using the US GDP growth rates. This technique combination enables handling high-dimensional data and reveals the relative importance of each individual forecast. First, it is possible to enhance forecasting performance in certain practical instances by randomly selecting smaller subsets of individual forecasts and obtaining a new set of predictions based on a regression-based weighting scheme. The optimal value of selected individual forecasts is also empirically studied. Then, a connection between RSM and SVD is proposed, enabling the examination of each individual forecast’s contribution to the final prediction, even when there is a large number of forecasts. This approach is model-agnostic (can be applied to any set of predictions) and facilitates understanding of how the aggregated prediction is obtained based on individual forecasts, which is crucial for decision-makers.
Read article
Does IFRS Information on Tax Loss Carryforwards and Negative Performance Improve Predictions of Earnings and Cash Flows?
Sandra Dreher, Sebastian Eichfelder, Felix Noth
Journal of Business Economics,
January
2024
Abstract
We analyze the usefulness of accounting information on tax loss carryforwards and negative performance to predict earnings and cash flows. We use hand-collected information on tax loss carryforwards and corresponding deferred taxes from the International Financial Reporting Standards tax footnotes for listed firms from Germany. Our out-of-sample tests show that considering accounting information on tax loss carryforwards does not enhance performance forecasts and typically even worsens predictions. The most likely explanation is model overfitting. Besides, common forecasting approaches that deal with negative performance are prone to prediction errors. We provide a simple empirical specification to account for that problem.
Read article
Searching where Ideas Are Harder to Find – The Productivity Slowdown as a Result of Firms Hindering Disruptive Innovation
Richard Bräuer
IWH Discussion Papers,
No. 22,
2023
Abstract
This paper proposes to explain the productivity growth slowdown with the poaching of disruptive inventors by firms these inventors threaten with their research. I build an endogenous growth model with incremental and disruptive innovation and an inventor labor market where this defensive poaching takes place. Incremental firms poach more as they grow, which lowers the probability of disruption and makes large incremental firms even more prevalent. I perform an event study around disruptive innovations to confirm the main features of the model: Disruptions increase future research productivity, hurt incumbent inventors and raise the probability of future disruption. Without disruption, technology classes slowly trend even further towards incrementalism. I calibrate the model to the global patent landscape in 1990 and show that the model predicts 52% of the decline of disruptive innovation until 2010.
Read article
Conditional Macroeconomic Survey Forecasts: Revisions and Errors
Alexander Glas, Katja Heinisch
Journal of International Money and Finance,
November
2023
Abstract
Using data from the European Central Bank's Survey of Professional Forecasters and ECB/Eurosystem staff projections, we analyze the role of ex-ante conditioning variables for macroeconomic forecasts. In particular, we test to which extent the updating and ex-post performance of predictions for inflation, real GDP growth and unemployment are related to beliefs about future oil prices, exchange rates, interest rates and wage growth. While oil price and exchange rate predictions are updated more frequently than macroeconomic forecasts, the opposite is true for interest rate and wage growth expectations. Beliefs about future inflation are closely associated with oil price expectations, whereas expected interest rates are related to predictions of output growth and unemployment. Exchange rate predictions also matter for macroeconomic forecasts, albeit less so than the other variables. With regard to forecast errors, wage growth and GDP growth closely comove, but only during the period when interest rates are at the effective zero lower bound.
Read article
Projects
Our Projects 07.2022 ‐ 12.2026 Evaluation of the InvKG and the federal STARK programme On behalf of the Federal Ministry of Economics and Climate Protection, the IWH and the RWI…
See page
Market-implied Ratings and Their Divergence from Credit Ratings
Iftekhar Hasan, Winnie P. H. Poon, Jianfu Shen, Gaiyan Zhang
Journal of Financial Research,
No. 2,
2023
Abstract
In this article, we investigate the divergence between credit ratings (CRs) and Moody's market-implied ratings (MIRs). Our evidence shows that rating gaps provide incremental information to the market regarding issuers' default risk over CRs alone in the short horizon and outperform CRs over extended horizons. The predictive ability of rating gaps is greater for more opaque and volatile issuers. Such predictability was more pronounced during the 2008 financial crisis but weakened in the post-Dodd-Frank Act period. This finding is consistent with credit rating agencies' efforts to improve their performance when facing regulatory pressure. Moreover, our analysis identifies rating-gap signals that do (do not) lead to subsequent Moody's actions to place issuers on negative outlook and watchlists. We find that negative signals from MIR gaps have a real economic impact on issuers' fundamentals such as profitability, leverage, investment, and default risk, thus supporting the recovery-efforts hypothesis.
Read article
On Modeling IPO Failure Risk
Gonul Colak, Mengchuan Fu, Iftekhar Hasan
Economic Modelling,
April
2022
Abstract
This paper offers a novel framework, combining firm operational risk, IPO pricing risk, and market risk, to model IPO failure risk. By analyzing nearly a thousand variables, we observe that prior IPO failure risk models have suffered from a major missing-variable problem. Evidence reveals several key new firm-level determinants, e.g., the volatility operating performance, the size of its accounts payable, pretax income to common equity, total short-term debt, and a few macroeconomic variables such as treasury bill rate, and book-to-market of the DJIA index. These findings have major economic implications. The total value loss from not predicting the imminent failure of an IPO is significantly lower with this proposed model compared to other established models. The IPO investors could have saved around $18billion over the period between 1994 and 2016 by using this model.
Read article
A Comparison of Monthly Global Indicators for Forecasting Growth
Christiane Baumeister, Pierre Guérin
International Journal of Forecasting,
No. 3,
2021
Abstract
This paper evaluates the predictive content of a set of alternative monthly indicators of global economic activity for nowcasting and forecasting quarterly world real GDP growth using mixed-frequency models. It shows that a recently proposed indicator that covers multiple dimensions of the global economy consistently produces substantial improvements in forecasting accuracy, while other monthly measures have more mixed success. Specifically, the best-performing model yields impressive gains with MSPE reductions of up to 34% at short horizons and up to 13% at long horizons relative to an autoregressive benchmark. The global economic conditions indicator also contains valuable information for assessing the current and future state of the economy for a set of individual countries and groups of countries. This indicator is used to track the evolution of the nowcasts for the U.S., the OECD area, and the world economy during the COVID-19 pandemic and the main factors that drive the nowcasts are quantified.
Read article
Conditional Macroeconomic Forecasts: Disagreement, Revisions and Forecast Errors
Alexander Glas, Katja Heinisch
IWH Discussion Papers,
No. 7,
2021
Abstract
Using data from the European Central Bank‘s Survey of Professional Forecasters, we analyse the role of ex-ante conditioning variables for macroeconomic forecasts. In particular, we test to which extent the heterogeneity, updating and ex-post performance of predictions for inflation, real GDP growth and the unemployment rate are related to assumptions about future oil prices, exchange rates, interest rates and wage growth. Our findings indicate that inflation forecasts are closely associated with oil price expectations, whereas expected interest rates are used primarily to predict output growth and unemployment. Expectations about exchange rates and wage growth also matter for macroeconomic forecasts, albeit less so than oil prices and interest rates. We show that survey participants can considerably improve forecast accuracy for macroeconomic outcomes by reducing prediction errors for external conditions. Our results contribute to a better understanding of the expectation formation process of experts.
Read article
Optimizing Policymakers’ Loss Functions in Crisis Prediction: Before, Within or After?
Peter Sarlin, Gregor von Schweinitz
Macroeconomic Dynamics,
No. 1,
2021
Abstract
Recurring financial instabilities have led policymakers to rely on early-warning models to signal financial vulnerabilities. These models rely on ex-post optimization of signaling thresholds on crisis probabilities accounting for preferences between forecast errors, but come with the crucial drawback of unstable thresholds in recursive estimations. We propose two alternatives for threshold setting with similar or better out-of-sample performance: (i) including preferences in the estimation itself and (ii) setting thresholds ex-ante according to preferences only. Given probabilistic model output, it is intuitive that a decision rule is independent of the data or model specification, as thresholds on probabilities represent a willingness to issue a false alarm vis-à-vis missing a crisis. We provide real-world and simulation evidence that this simplification results in stable thresholds, while keeping or improving on out-of-sample performance. Our solution is not restricted to binary-choice models, but directly transferable to the signaling approach and all probabilistic early-warning models.
Read article