Forecast Combination and Interpretability Using Random Subspace
Boris Kozyrev
IWH Discussion Papers,
No. 21,
2024
Abstract
This paper investigates forecast aggregation via the random subspace regressions method (RSM) and explores the potential link between RSM and the Shapley value decomposition (SVD) using the US GDP growth rates. This technique combination enables handling high-dimensional data and reveals the relative importance of each individual forecast. First, it is possible to enhance forecasting performance in certain practical instances by randomly selecting smaller subsets of individual forecasts and obtaining a new set of predictions based on a regression-based weighting scheme. The optimal value of selected individual forecasts is also empirically studied. Then, a connection between RSM and SVD is proposed, enabling the examination of each individual forecast’s contribution to the final prediction, even when there is a large number of forecasts. This approach is model-agnostic (can be applied to any set of predictions) and facilitates understanding of how the aggregated prediction is obtained based on individual forecasts, which is crucial for decision-makers.
Read article
Flow of Conjunctural Information and Forecast of Euro Area Economic Activity
Katja Drechsel, L. Maurin
Journal of Forecasting,
No. 3,
2011
Abstract
Combining forecasts, we analyse the role of information flow in computing short-term forecasts up to one quarter ahead for the euro area GDP and its main components. A dataset of 114 monthly indicators is set up and simple bridge equations are estimated. The individual forecasts are then pooled, using different weighting schemes. To take into consideration the release calendar of each indicator, six forecasts are compiled successively during the quarter. We found that the sequencing of information determines the weight allocated to each block of indicators, especially when the first month of hard data becomes available. This conclusion extends the findings of the recent literature. Moreover, when combining forecasts, two weighting schemes are found to outperform the equal weighting scheme in almost all cases. Compared to an AR forecast, these improve by more than 40% the forecast performance for GDP in the current and next quarter.
Read article
Macroeconomic Challenges in the Euro Area and the Acceding Countries
Katja Drechsel
Dissertation, Fachbereich Wirtschaftswissenschaften der Universität Osnabrück,
2010
Abstract
deutscher Titel: Makroökonomische Herausforderungen für die Eurozone und die Beitrittskandidaten
Abstract: The conduct of effective economic policy faces a multiplicity of macroeconomic challenges, which requires a wide scope of theoretical and empirical analyses. With a focus on the European Union, this doctoral dissertation consists of two parts which make empirical and methodological contributions to the literature on forecasting real economic activity and on the analysis of business cycles in a boom-bust framework in the light of the EMU enlargement. In the first part, we tackle the problem of publication lags and analyse the role of the information flow in computing short-term forecasts up to one quarter ahead for the euro area GDP and its main components. A huge dataset of monthly indicators is used to estimate simple bridge equations. The individual forecasts are then pooled, using different weighting schemes. To take into consideration the release calendar of each indicator, six forecasts are compiled successively during the quarter. We find that the sequencing of information determines the weight allocated to each block of indicators, especially when the first month of hard data becomes available. This conclusion extends the findings of the recent literature. Moreover, when combining forecasts, two weighting schemes are found to outperform the equal weighting scheme in almost all cases. In the second part, we focus on the potential accession of the new EU Member States in Central and Eastern Europe to the euro area. In contrast to the discussion of Optimum Currency Areas, we follow a non-standard approach for the discussion on abandonment of national currencies the boom-bust theory. We analyse whether evidence for boom-bust cycles is given and draw conclusions whether these countries should join the EMU in the near future. Using a broad range of data sets and empirical methods we document credit market imperfections, comprising asymmetric financing opportunities across sectors, excess foreign currency liabilities and contract enforceability problems both at macro and micro level. Furthermore, we depart from the standard analysis of comovements of business cycles among countries and rather consider long-run and short-run comovements across sectors. While the results differ across countries, we find evidence for credit market imperfections in Central and Eastern Europe and different sectoral reactions to shocks. This gives favour for the assessment of the potential euro accession using this supplementary, non-standard approach.
Read article
Should We Trust in Leading Indicators? Evidence from the Recent Recession
Katja Drechsel, Rolf Scheufele
Abstract
The paper analyzes leading indicators for GDP and industrial production in Germany. We focus on the performance of single and pooled leading indicators during the pre-crisis and crisis period using various weighting schemes. Pairwise and joint significant tests are used to evaluate single indicator as well as forecast combination methods. In addition, we use an end-of-sample instability test to investigate the stability of forecasting models during the recent financial crisis. We find in general that only a small number of single indicator models were performing well before the crisis. Pooling can substantially increase the reliability of leading indicator forecasts. During the crisis the relative performance of many leading indicator models increased. At short horizons, survey indicators perform best, while at longer horizons financial indicators, such as term spreads and risk spreads, improve relative to the benchmark.
Read article