Does Machine Learning Help us Predict Banking Crises?
Johannes Beutel, Sophia List, Gregor von Schweinitz
Journal of Financial Stability,
December
2019
Abstract
This paper compares the out-of-sample predictive performance of different early warning models for systemic banking crises using a sample of advanced economies covering the past 45 years. We compare a benchmark logit approach to several machine learning approaches recently proposed in the literature. We find that while machine learning methods often attain a very high in-sample fit, they are outperformed by the logit approach in recursive out-of-sample evaluations. This result is robust to the choice of performance metric, crisis definition, preference parameter, and sample length, as well as to using different sets of variables and data transformations. Thus, our paper suggests that further enhancements to machine learning early warning models are needed before they are able to offer a substantial value-added for predicting systemic banking crises. Conventional logit models appear to use the available information already fairly efficiently, and would for instance have been able to predict the 2007/2008 financial crisis out-of-sample for many countries. In line with economic intuition, these models identify credit expansions, asset price booms and external imbalances as key predictors of systemic banking crises.
Read article
Predicting Free-riding in a Public Goods Game – Analysis of Content and Dynamic Facial Expressions in Face-to-Face Communication
Dmitri Bershadskyy, Ehsan Othman, Frerk Saxen
IWH Discussion Papers,
No. 9,
2019
Abstract
This paper illustrates how audio-visual data from pre-play face-to-face communication can be used to identify groups which contain free-riders in a public goods experiment. It focuses on two channels over which face-to-face communication influences contributions to a public good. Firstly, the contents of the face-to-face communication are investigated by categorising specific strategic information and using simple meta-data. Secondly, a machine-learning approach to analyse facial expressions of the subjects during their communications is implemented. These approaches constitute the first of their kind, analysing content and facial expressions in face-to-face communication aiming to predict the behaviour of the subjects in a public goods game. The analysis shows that verbally mentioning to fully contribute to the public good until the very end and communicating through facial clues reduce the commonly observed end-game behaviour. The length of the face-to-face communication quantified in number of words is further a good measure to predict cooperation behaviour towards the end of the game. The obtained findings provide first insights how a priori available information can be utilised to predict free-riding behaviour in public goods games.
Read article
An Evaluation of Early Warning Models for Systemic Banking Crises: Does Machine Learning Improve Predictions?
Johannes Beutel, Sophia List, Gregor von Schweinitz
Abstract
This paper compares the out-of-sample predictive performance of different early warning models for systemic banking crises using a sample of advanced economies covering the past 45 years. We compare a benchmark logit approach to several machine learning approaches recently proposed in the literature. We find that while machine learning methods often attain a very high in-sample fit, they are outperformed by the logit approach in recursive out-of-sample evaluations. This result is robust to the choice of performance measure, crisis definition, preference parameter, and sample length, as well as to using different sets of variables and data transformations. Thus, our paper suggests that further enhancements to machine learning early warning models are needed before they are able to offer a substantial value-added for predicting systemic banking crises. Conventional logit models appear to use the available information already fairly effciently, and would for instance have been able to predict the 2007/2008 financial crisis out-of-sample for many countries. In line with economic intuition, these models identify credit expansions, asset price booms and external imbalances as key predictors of systemic banking crises.
Read article
Understanding CSR Champions: A Machine Learning Approach
Alona Bilokha, Mingying Cheng, Mengchuan Fu, Iftekhar Hasan
Annals of Operations Research,
2099
Abstract
In this paper, we study champions of corporate social responsibility (CSR) performance among the U.S. publicly traded firms and their common characteristics by utilizing machine learning algorithms to identify predictors of firms’ CSR activity. We contribute to the CSR and leadership determinants literature by introducing the first comprehensive framework for analyzing the factors associated with corporate engagement with socially responsible behaviors by grouping all relevant predictors into four broad categories: corporate governance, managerial incentives, leadership, and firm characteristics. We find that strong corporate governance characteristics, as manifested in board member heterogeneity and managerial incentives, are the top predictors of CSR performance. Our results suggest policy implications for providing incentives and fostering characteristics conducive to firms “doing good.”
Read article