Economic Sentiment: Disentangling Private Information from Public Knowledge
Katja Heinisch, Axel Lindner
IWH Discussion Papers,
No. 15,
2021
Abstract
This paper addresses a general problem with the use of surveys as source of information about the state of an economy: Answers to surveys are highly dependent on information that is publicly available, while only additional information that is not already publicly known has the potential to improve a professional forecast. We propose a simple procedure to disentangle the private information of agents from knowledge that is already publicly known for surveys that ask for general as well as for private prospects. Our results reveal the potential of our proposed technique for the usage of European Commissions‘ consumer surveys for economic forecasting for Germany.
Read article
Conditional Macroeconomic Forecasts: Disagreement, Revisions and Forecast Errors
Alexander Glas, Katja Heinisch
IWH Discussion Papers,
No. 7,
2021
Abstract
Using data from the European Central Bank‘s Survey of Professional Forecasters, we analyse the role of ex-ante conditioning variables for macroeconomic forecasts. In particular, we test to which extent the heterogeneity, updating and ex-post performance of predictions for inflation, real GDP growth and the unemployment rate are related to assumptions about future oil prices, exchange rates, interest rates and wage growth. Our findings indicate that inflation forecasts are closely associated with oil price expectations, whereas expected interest rates are used primarily to predict output growth and unemployment. Expectations about exchange rates and wage growth also matter for macroeconomic forecasts, albeit less so than oil prices and interest rates. We show that survey participants can considerably improve forecast accuracy for macroeconomic outcomes by reducing prediction errors for external conditions. Our results contribute to a better understanding of the expectation formation process of experts.
Read article
Phillips Curve and Output Expectations: New Perspectives from the Euro Zone
Giuliana Passamani, Alessandro Sardone, Roberto Tamborini
DEM Working Papers,
No. 6,
2020
published in: Empirica
Abstract
When referring to the inflation trends over the last decade, economists speak of "puzzles": a “missing disinflation” puzzle in the aftermath of the Great Recession, and a ”missing inflation” one in the years of recovery to nowadays. To this, a specific "excess deflation" puzzle may be added during the post-crisis depression in the Euro Zone. The standard Phillips Curve model, in this context, has failed as the basic tool to produce reliable forecasts of future price developments, leading many scholars to consider this instrument to be no more adequate. The purpose of this paper is to contribute to this literature through the development of a newly specified Phillips Curve model, in which the inflation-expectation component is rationally related to the business cycle. The model is tested with the Euro Zone data 1999-2019 showing that inflation turns out to be consistently determined by output gaps and and experts' survey-based forecast errors, and that the puzzles can be explained by the interplay between these two variables.
Read article
Asymmetric Investment Responses to Firm-specific Forecast Errors
Julian Berner, Manuel Buchholz, Lena Tonzer
Abstract
This paper analyses how firm-specific forecast errors derived from survey data of German manufacturing firms over 2007–2011 affect firms’ investment propensity. Understanding how forecast errors affect firm investment behaviour is key to mitigate economic downturns during and after crisis periods in which forecast errors tend to increase. Our findings reveal a negative impact of absolute forecast errors on investment. Strikingly, asymmetries arise depending on the size and direction of the forecast error. The investment propensity declines if the realised situation is worse than expected. However, firms do not adjust investment if the realised situation is better than expected suggesting that the uncertainty component of the forecast error counteracts positive effects of unexpectedly favorable business conditions. Given that the fraction of firms making positive forecast errors is higher after the peak of the recent financial crisis, this mechanism can be one explanation behind staggered economic growth and slow recovery following crises.
Read article
Nowcasting East German GDP Growth: a MIDAS Approach
João Carlos Claudio, Katja Heinisch, Oliver Holtemöller
Empirical Economics,
No. 1,
2020
Abstract
Economic forecasts are an important element of rational economic policy both on the federal and on the local or regional level. Solid budgetary plans for government expenditures and revenues rely on efficient macroeconomic projections. However, official data on quarterly regional GDP in Germany are not available, and hence, regional GDP forecasts do not play an important role in public budget planning. We provide a new quarterly time series for East German GDP and develop a forecasting approach for East German GDP that takes data availability in real time and regional economic indicators into account. Overall, we find that mixed-data sampling model forecasts for East German GDP in combination with model averaging outperform regional forecast models that only rely on aggregate national information.
Read article
Nowcasting East German GDP Growth: a MIDAS Approach
João Carlos Claudio, Katja Heinisch, Oliver Holtemöller
Abstract
Economic forecasts are an important element of rational economic policy both on the federal and on the local or regional level. Solid budgetary plans for government expenditures and revenues rely on efficient macroeconomic projections. However, official data on quarterly regional GDP in Germany are not available, and hence, regional GDP forecasts do not play an important role in public budget planning. We provide a new quarterly time series for East German GDP and develop a forecasting approach for East German GDP that takes data availability in real time and regional economic indicators into account. Overall, we find that mixed-data sampling model forecasts for East German GDP in combination with model averaging outperform regional forecast models that only rely on aggregate national information.
Read article
Should Forecasters Use Real‐time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence
Katja Heinisch, Rolf Scheufele
German Economic Review,
No. 4,
2019
Abstract
In this paper, we investigate whether differences exist among forecasts using real‐time or latest‐available data to predict gross domestic product (GDP). We employ mixed‐frequency models and real‐time data to reassess the role of surveys and financial data relative to industrial production and orders in Germany. Although we find evidence that forecast characteristics based on real‐time and final data releases differ, we also observe minimal impacts on the relative forecasting performance of indicator models. However, when obtaining the optimal combination of soft and hard data, the use of final release data may understate the role of survey information.
Read article
Should Forecasters Use Real-time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence
Katja Heinisch, Rolf Scheufele
Abstract
In this paper we investigate whether differences exist among forecasts using real-time or latest-available data to predict gross domestic product (GDP). We employ mixed-frequency models and real-time data to reassess the role of survey data relative to industrial production and orders in Germany. Although we find evidence that forecast characteristics based on real-time and final data releases differ, we also observe minimal impacts on the relative forecasting performance of indicator models. However, when obtaining the optimal combination of soft and hard data, the use of final release data may understate the role of survey information.
Read article
Asymmetric Investment Responses to Firm-specific Uncertainty
Julian Berner, Manuel Buchholz, Lena Tonzer
Abstract
This paper analyzes how firm-specific uncertainty affects firms’ propensity to invest. We measure firm-specific uncertainty as firms’ absolute forecast errors derived from survey data of German manufacturing firms over 2007–2011. In line with the literature, our empirical findings reveal a negative impact of firm-specific uncertainty on investment. However, further results show that the investment response is asymmetric, depending on the size and direction of the forecast error. The investment propensity declines significantly if the realized situation is worse than expected. However, firms do not adjust their investment if the realized situation is better than expected, which suggests that the uncertainty effect counteracts the positive effect due to unexpectedly favorable business conditions. This can be one explanation behind the phenomenon of slow recovery in the aftermath of financial crises. Additional results show that the forecast error is highly concurrent with an ex-ante measure of firm-specific uncertainty we obtain from the survey data. Furthermore, the effect of firm-specific uncertainty is enforced for firms that face a tighter financing situation.
Read article
The Financial Crisis from a Forecaster's Perspective
Katja Drechsel, Rolf Scheufele
Kredit und Kapital,
No. 1,
2012
Abstract
This paper analyses the recession in 2008/2009 in Germany. This recession is very different from previous recessions in particular regarding their causes and magnitude. We show to what extent forecasters and forecasts based on leading indicators fail to detect the timing and the magnitude of the recession. This study shows that large forecast errors for both expert forecasts and forecasts based on leading indicators resulted during this recession which implies that the recession was very difficult to forecast. However, some leading indicators (survey data, risk spreads, stock prices) have indicated an economic downturn and hence, beat univariate time series models. Although the combination of individual forecasts provides an improvement compared to the benchmark model, the combined forecasts are worse than several individual models. A comparison of expert forecasts withthe best forecasts based on leading indicators shows only minor deviations. Overall, the range for an improvement of expert forecasts in the crisis compared to indicator forecasts is small.
Read article