Advances in Using Vector Autoregressions to Estimate Structural Magnitudes
Christiane Baumeister, James D. Hamilton
Econometric Theory,
No. 3,
2024
Abstract
This paper surveys recent advances in drawing structural conclusions from vector autoregressions (VARs), providing a unified perspective on the role of prior knowledge. We describe the traditional approach to identification as a claim to have exact prior information about the structural model and propose Bayesian inference as a way to acknowledge that prior information is imperfect or subject to error. We raise concerns from both a frequentist and a Bayesian perspective about the way that results are typically reported for VARs that are set-identified using sign and other restrictions. We call attention to a common but previously unrecognized error in estimating structural elasticities and show how to correctly estimate elasticities even in the case when one only knows the effects of a single structural shock.
Read article
Is Risk the Fuel of the Business Cycle? Financial Frictions and Oil Market Disturbances
Christoph Schult
IWH Discussion Papers,
No. 4,
2024
Abstract
I estimate a dynamic stochastic general equilibrium (DSGE) model for the United States that incorporates oil market shocks and risk shocks working through credit market frictions. The findings of this analysis indicate that risk shocks play a crucial role during the Great Recession and the Dot-Com bubble but not during other economic downturns. Credit market frictions do not amplify persistent oil market shocks. This result holds as long as entry and exit rates of entrepreneurs are independent of the business cycle.
Read article
The Importance of Credit Demand for Business Cycle Dynamics
Gregor von Schweinitz
IWH Discussion Papers,
No. 21,
2023
Abstract
This paper contributes to a better understanding of the important role that credit demand plays for credit markets and aggregate macroeconomic developments as both a source and transmitter of economic shocks. I am the first to identify a structural credit demand equation together with credit supply, aggregate supply, demand and monetary policy in a Bayesian structural VAR. The model combines informative priors on structural coefficients and multiple external instruments to achieve identification. In order to improve identification of the credit demand shocks, I construct a new granular instrument from regional mortgage origination.
I find that credit demand is quite elastic with respect to contemporaneous macroeconomic conditions, while credit supply is relatively inelastic. I show that credit supply and demand shocks matter for aggregate fluctuations, albeit at different times: credit demand shocks mostly drove the boom prior to the financial crisis, while credit supply shocks were responsible during and after the crisis itself. In an out-of-sample exercise, I find that the Covid pandemic induced a large expansion of credit demand in 2020Q2, which pushed the US economy towards a sustained recovery and helped to avoid a stagflationary scenario in 2022.
Read article
Media Response
Media Response November 2024 IWH: Manchmal wäre der Schlussstrich die angemessenere Lösung in: TextilWirtschaft, 21.11.2024 IWH: Existenzgefahr Nun droht eine Pleitewelle in: DVZ…
See page
People
People Doctoral Students PhD Representatives Alumni Supervisors Lecturers Coordinators Doctoral Students Afroza Alam (Supervisor: Reint Gropp ) Julian Andres Diaz Acosta…
See page
OVERHANG: Debt overhang and green investments - the role of banks in climate-friendly management of emission-intensive fixed assets
OVERHANG: Debt overhang and green investments - the role of banks in climate-friendly management of emission-intensive fixed assets Subproject 1: Policy Changes, Lending and…
See page
Herding Behavior and Systemic Risk in Global Stock Markets
Iftekhar Hasan, Radu Tunaru, Davide Vioto
Journal of Empirical Finance,
September
2023
Abstract
This paper provides new evidence of herding due to non- and fundamental information in global equity markets. Using quantile regressions applied to daily data for 33 countries, we investigate herding during the Eurozone crisis, China’s market crash in 2015–2016, in the aftermath of the Brexit vote and during the Covid-19 Pandemic. We find significant evidence of herding driven by non-fundamental information in case of negative tail market conditions for most countries. This study also investigates the relationship between herding and systemic risk, suggesting that herding due to fundamentals increases when systemic risk increases more than when driven by non-fundamentals. Granger causality tests and Johansen’s vector error-correction model provide solid empirical evidence of a strong interrelationship between herding and systemic risk, entailing that herding behavior may be an ex-ante aspect of systemic risk, with a more relevant role played by herding based on fundamental information in increasing systemic risk.
Read article
Department Profiles
Research Profiles of the IWH Departments All doctoral students are allocated to one of the four research departments (Financial Markets – Laws, Regulations and Factor Markets –…
See page
Financial Stability
Financial Systems: The Anatomy of the Market Economy How the financial system is constructed, how it works, how to keep it fit and what good a bit of chocolate can do. Dossier In…
See page
Behaviour
The maths behind gut decisions First carefully weigh up the costs and benefits and then make a rational decision. This may be the way we want it to be. But in reality, invisible…
See page