Advances in Using Vector Autoregressions to Estimate Structural Magnitudes
Christiane Baumeister, James D. Hamilton
Econometric Theory,
No. 3,
2024
Abstract
This paper surveys recent advances in drawing structural conclusions from vector autoregressions (VARs), providing a unified perspective on the role of prior knowledge. We describe the traditional approach to identification as a claim to have exact prior information about the structural model and propose Bayesian inference as a way to acknowledge that prior information is imperfect or subject to error. We raise concerns from both a frequentist and a Bayesian perspective about the way that results are typically reported for VARs that are set-identified using sign and other restrictions. We call attention to a common but previously unrecognized error in estimating structural elasticities and show how to correctly estimate elasticities even in the case when one only knows the effects of a single structural shock.
Read article
Advances in Using Vector Autoregressions to Estimate Structural Magnitudes
Christiane Baumeister, James D. Hamilton
Abstract
This paper discusses drawing structural conclusions from vector autoregressions. We call attention to a common error in estimating structural elasticities and show how to correctly estimate elasticities even in the case when one knows only the effects of a single structural shock and the covariance matrix of the reduced-form residuals. We describe the traditional approach to identification as a claim to have exact prior information about the structural model and propose Bayesian inference as a way to acknowledge that prior information is imperfect or subject to error. We raise concerns about the way that results are typically reported for VARs that are set-identified using sign and other restrictions.
Read article
Disentangling Covid-19, Economic Mobility, and Containment Policy Shocks
Annika Camehl, Malte Rieth
IWH Discussion Papers,
No. 2,
2021
Abstract
We study the dynamic impact of Covid-19, economic mobility, and containment policy shocks. We use Bayesian panel structural vector autoregressions with daily data for 44 countries, identified through sign and zero restrictions. Incidence and mobility shocks raise cases and deaths significantly for two months. Restrictive policy shocks lower mobility immediately, cases after one week, and deaths after three weeks. Non-pharmaceutical interventions explain half of the variation in mobility, cases, and deaths worldwide. These flattened the pandemic curve, while deepening the global mobility recession. The policy tradeoff is 1 p.p. less mobility per day for 9% fewer deaths after two months.
Read article
Drawing Conclusions from Structural Vector Autoregressions Identified on the Basis of Sign Restrictions
Christiane Baumeister, James D. Hamilton
Journal of International Money and Finance,
December
2020
Abstract
This paper discusses the problems associated with using information about the signs of certain magnitudes as a basis for drawing structural conclusions in vector autoregressions. We also review available tools to solve these problems. For illustration we use Dahlhaus and Vasishtha’s (2019) study of the effects of a U.S. monetary contraction on capital flows to emerging markets. We explain why sign restrictions alone are not enough to allow us to answer the question and suggest alternative approaches that could be used.
Read article
Drawing Conclusions from Structural Vector Autoregressions Identified on the Basis of Sign Restrictions
Christiane Baumeister, James D. Hamilton
Abstract
This paper discusses the problems associated with using information about the signs of certain magnitudes as a basis for drawing structural conclusions in vector autoregressions. We also review available tools to solve these problems. For illustration we use Dahlhaus and Vasishtha's (2019) study of the effects of a U.S. monetary contraction on capital flows to emerging markets. We explain why sign restrictions alone are not enough to allow us to answer the question and suggest alternative approaches that could be used.
Read article
Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks
Christiane Baumeister, James D. Hamilton
American Economic Review,
No. 5,
2019
Abstract
Traditional approaches to structural vector autoregressions (VARs) can be viewed as special cases of Bayesian inference arising from very strong prior beliefs. These methods can be generalized with a less restrictive formulation that incorporates uncertainty about the identifying assumptions themselves. We use this approach to revisit the importance of shocks to oil supply and demand. Supply disruptions turn out to be a bigger factor in historical oil price movements and inventory accumulation a smaller factor than implied by earlier estimates. Supply shocks lead to a reduction in global economic activity after a significant lag, whereas shocks to oil demand do not.
Read article
Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information
Christiane Baumeister, James D. Hamilton
Econometrica,
No. 5,
2015
Abstract
This paper makes the following original contributions to the literature. (i) We develop a simpler analytical characterization and numerical algorithm for Bayesian inference in structural vector autoregressions (VARs) that can be used for models that are overidentified, just‐identified, or underidentified. (ii) We analyze the asymptotic properties of Bayesian inference and show that in the underidentified case, the asymptotic posterior distribution of contemporaneous coefficients in an n‐variable VAR is confined to the set of values that orthogonalize the population variance–covariance matrix of ordinary least squares residuals, with the height of the posterior proportional to the height of the prior at any point within that set. For example, in a bivariate VAR for supply and demand identified solely by sign restrictions, if the population correlation between the VAR residuals is positive, then even if one has available an infinite sample of data, any inference about the demand elasticity is coming exclusively from the prior distribution. (iii) We provide analytical characterizations of the informative prior distributions for impulse‐response functions that are implicit in the traditional sign‐restriction approach to VARs, and we note, as a special case of result (ii), that the influence of these priors does not vanish asymptotically. (iv) We illustrate how Bayesian inference with informative priors can be both a strict generalization and an unambiguous improvement over frequentist inference in just‐identified models. (v) We propose that researchers need to explicitly acknowledge and defend the role of prior beliefs in influencing structural conclusions and we illustrate how this could be done using a simple model of the U.S. labor market.
Read article
The Quantity Theory Revisited: A New Structural Approach
Makram El-Shagi, Sebastian Giesen
Macroeconomic Dynamics,
No. 1,
2015
Abstract
We propose a unified identification scheme to identify monetary shocks and track their propagation through the economy. We combine three approaches dealing with the consequences of monetary shocks. First, we adjust a state space version of the P-star type model employing money overhang as the driving force of inflation. Second, we identify the contemporaneous impact of monetary policy shocks by applying a sign restriction identification scheme to the reduced form given by the state space signal equations. Third, to ensure that our results are not distorted by the measurement error exhibited by the official monetary data, we employ the Divisia M4 monetary aggregate provided by the Center for Financial Stability. Our approach overcomes one of the major difficulties of previous models by using a data-driven identification of equilibrium velocity. Thus, we are able to show that a P-star model can fit U.S. data and money did indeed matter in the United States.
Read article
The Quantity Theory Revisited: A New Structural Approach
Makram El-Shagi, Sebastian Giesen
Abstract
While the long run relation between money and inflation is well established, empirical evidence on the adjustment to the long run equilibrium is very heterogeneous. In this paper we show, that the development of US consumer price inflation between 1960Q1 and 2005Q4 is strongly driven by money overhang. To this end, we use a multivariate state space framework that substantially expands the traditional vector error correction approach. This approach allows us to estimate the persistent components of velocity and GDP. A sign restriction approach is subsequently used to identify the structural shocks to the signal equations of the state space model, that explain money growth, inflation and GDP growth. We also account for the possibility that measurement error exhibited by simple-sum monetary aggregates causes the consequences of monetary shocks to be improperly identified by using a Divisia monetary aggregate. Our findings suggest that when the money is measured using a reputable index number, the quantity theory holds for the United States.
Read article