Step by Step ‒ A Quarterly Evaluation of EU Commission's GDP Forecasts
Katja Heinisch
IWH Discussion Papers,
Nr. 22,
2024
Abstract
The European Commission’s growth forecasts play a crucial role in shaping policies and provide a benchmark for many (national) forecasters. The annual forecasts are built on quarterly estimates, which do not receive much attention and are hardly known. Therefore, this paper provides a comprehensive analysis of multi-period ahead quarterly GDP growth forecasts for the European Union (EU), euro area, and several EU member states with respect to first-release and current-release data. Forecast revisions and forecast errors are analyzed, and the results show that the forecasts are not systematically biased. However, GDP forecasts for several member states tend to be overestimated at short-time horizons. Furthermore, the final forecast revision in the current quarter is generally downward biased for almost all countries. Overall, the differences in mean forecast errors are minor when using real-time data or pseudo-real-time data and these differences do not significantly impact the overall assessment of the forecasts’ quality. Additionally, the forecast performance varies across countries, with smaller countries and Central and Eastern European countries (CEECs) experiencing larger forecast errors. The paper provides evidence that there is still potential for improvement in forecasting techniques both for nowcasts but also forecasts up to eight quarters ahead. In the latter case, the performance of the mean forecast tends to be superior for many countries.
Artikel Lesen
Forecast Combination and Interpretability Using Random Subspace
Boris Kozyrev
IWH Discussion Papers,
Nr. 21,
2024
Abstract
This paper investigates forecast aggregation via the random subspace regressions method (RSM) and explores the potential link between RSM and the Shapley value decomposition (SVD) using the US GDP growth rates. This technique combination enables handling high-dimensional data and reveals the relative importance of each individual forecast. First, it is possible to enhance forecasting performance in certain practical instances by randomly selecting smaller subsets of individual forecasts and obtaining a new set of predictions based on a regression-based weighting scheme. The optimal value of selected individual forecasts is also empirically studied. Then, a connection between RSM and SVD is proposed, enabling the examination of each individual forecast’s contribution to the final prediction, even when there is a large number of forecasts. This approach is model-agnostic (can be applied to any set of predictions) and facilitates understanding of how the aggregated prediction is obtained based on individual forecasts, which is crucial for decision-makers.
Artikel Lesen
Optimal Monetary Policy in a Two-sector Environmental DSGE Model
Oliver Holtemöller, Alessandro Sardone
IWH Discussion Papers,
Nr. 18,
2024
Abstract
In this paper, we discuss how environmental damage and emission reduction policies affect the conduct of monetary policy in a two-sector (clean and dirty) dynamic stochastic general equilibrium model. In particular, we examine the optimal response of the interest rate to changes in sectoral inflation due to standard supply shocks, conditional on a given environmental policy. We then compare the performance of a nonstandard monetary rule with sectoral inflation targets to that of a standard Taylor rule. Our main results are as follows: first, the optimal monetary policy is affected by the existence of environmental policy (carbon taxation), as this introduces a distortion in the relative price level between the clean and dirty sectors. Second, compared with a standard Taylor rule targeting aggregate inflation, a monetary policy rule with asymmetric responses to sector-specific inflation allows for reduced volatility in the inflation gap, output gap, and emissions. Third, a nonstandard monetary policy rule allows for a higher level of welfare, so the two goals of welfare maximization and emission minimization can be aligned.
Artikel Lesen
Forecasting Economic Activity Using a Neural Network in Uncertain Times: Monte Carlo Evidence and Application to the
German GDP
Oliver Holtemöller, Boris Kozyrev
IWH Discussion Papers,
Nr. 6,
2024
Abstract
In this study, we analyzed the forecasting and nowcasting performance of a generalized regression neural network (GRNN). We provide evidence from Monte Carlo simulations for the relative forecast performance of GRNN depending on the data-generating process. We show that GRNN outperforms an autoregressive benchmark model in many practically relevant cases. Then, we applied GRNN to forecast quarterly German GDP growth by extending univariate GRNN to multivariate and mixed-frequency settings. We could distinguish between “normal” times and situations where the time-series behavior is very different from “normal” times such as during the COVID-19 recession and recovery. GRNN was superior in terms of root mean forecast errors compared to an autoregressive model and to more sophisticated approaches such as dynamic factor models if applied appropriately.
Artikel Lesen
Does IFRS Information on Tax Loss Carryforwards and Negative Performance Improve Predictions of Earnings and Cash Flows?
Sandra Dreher, Sebastian Eichfelder, Felix Noth
Journal of Business Economics,
January
2024
Abstract
We analyze the usefulness of accounting information on tax loss carryforwards and negative performance to predict earnings and cash flows. We use hand-collected information on tax loss carryforwards and corresponding deferred taxes from the International Financial Reporting Standards tax footnotes for listed firms from Germany. Our out-of-sample tests show that considering accounting information on tax loss carryforwards does not enhance performance forecasts and typically even worsens predictions. The most likely explanation is model overfitting. Besides, common forecasting approaches that deal with negative performance are prone to prediction errors. We provide a simple empirical specification to account for that problem.
Artikel Lesen
Conditional Macroeconomic Survey Forecasts: Revisions and Errors
Alexander Glas, Katja Heinisch
Journal of International Money and Finance,
November
2023
Abstract
Using data from the European Central Bank's Survey of Professional Forecasters and ECB/Eurosystem staff projections, we analyze the role of ex-ante conditioning variables for macroeconomic forecasts. In particular, we test to which extent the updating and ex-post performance of predictions for inflation, real GDP growth and unemployment are related to beliefs about future oil prices, exchange rates, interest rates and wage growth. While oil price and exchange rate predictions are updated more frequently than macroeconomic forecasts, the opposite is true for interest rate and wage growth expectations. Beliefs about future inflation are closely associated with oil price expectations, whereas expected interest rates are related to predictions of output growth and unemployment. Exchange rate predictions also matter for macroeconomic forecasts, albeit less so than the other variables. With regard to forecast errors, wage growth and GDP growth closely comove, but only during the period when interest rates are at the effective zero lower bound.
Artikel Lesen
Department Profiles
Research Profiles of the IWH Departments All doctoral students are allocated to one of the four research departments (Financial Markets – Laws, Regulations and Factor Markets –…
Zur Seite
Projekte
Unsere Projekte 07.2022 ‐ 12.2026 Evaluierung des InvKG und des Bundesprogrammes STARK Bundesministerium für Wirtschaft und Klimaschutz (BMWK) Im Auftrag des Bundesministeriums…
Zur Seite
Department Profiles
Research Profiles of the IWH Departments All doctoral students are allocated to one of the four research departments (Financial Markets – Laws, Regulations and Factor Markets –…
Zur Seite
Cross-country Evidence on the Allocation of COVID-19 Government Subsidies and Consequences for Productivity
Tommaso Bighelli, Tibor Lalinsky, Juuso Vanhala
Journal of the Japanese and International Economies,
June
2023
Abstract
We study the consequences of the Covid-19 pandemic and related policy support on productivity. We employ an extensive micro-distributed exercise to access otherwise unavailable individual data on firm performance and government subsidies. Our cross-country evidence for five EU countries shows that the pandemic led to a significant short-term decline in aggregate productivity and the direct support to firms had only a limited positive effect on productivity developments. A thorough comparative analysis of the distribution of employment and overall direct subsidies, considering separately also relative firm-level size of support and the probability of being supported, reveals ambiguous cross-country results related to the firm-level productivity and points to the decisive role of other firm characteristics.
Artikel Lesen