Climate-resilient Economic Development in Vietnam: Insights from a Dynamic General Equilibrium Analysis (DGE-CRED)
Andrej Drygalla, Katja Heinisch, Christoph Schult
IWH Technical Reports,
No. 1,
2024
Abstract
In a multi-sector and multi-region framework, this paper employs a dynamic general equilibrium model to analyze climate-resilient economic development (DGE-CRED) in Vietnam. We calibrate sector and region-specific damage functions and quantify climate variable impacts on productivity and capital formation for various shared socioeconomic pathways (SSPs 119, 245, and 585). Our results based on simulations and cost-benefit analyses reveal a projected 5 percent reduction in annual GDP by 2050 in the SSP 245 scenario. Adaptation measures for the dyke system are crucial to mitigate the consumption gap, but they alone cannot sufficiently address it. Climate-induced damages to agriculture and labor productivity are the primary drivers of consumption reductions, underscoring the need for focused adaptation measures in the agricultural sector and strategies to reduce labor intensity as vital policy considerations for Vietnam’s response to climate change.
Read article
Optimal Monetary Policy in a Two-sector Environmental DSGE Model
Oliver Holtemöller, Alessandro Sardone
IWH Discussion Papers,
No. 18,
2024
Abstract
In this paper, we discuss how environmental damage and emission reduction policies affect the conduct of monetary policy in a two-sector (clean and dirty) dynamic stochastic general equilibrium model. In particular, we examine the optimal response of the interest rate to changes in sectoral inflation due to standard supply shocks, conditional on a given environmental policy. We then compare the performance of a nonstandard monetary rule with sectoral inflation targets to that of a standard Taylor rule. Our main results are as follows: first, the optimal monetary policy is affected by the existence of environmental policy (carbon taxation), as this introduces a distortion in the relative price level between the clean and dirty sectors. Second, compared with a standard Taylor rule targeting aggregate inflation, a monetary policy rule with asymmetric responses to sector-specific inflation allows for reduced volatility in the inflation gap, output gap, and emissions. Third, a nonstandard monetary policy rule allows for a higher level of welfare, so the two goals of welfare maximization and emission minimization can be aligned.
Read article
Forecasting Economic Activity Using a Neural Network in Uncertain Times: Monte Carlo Evidence and Application to the
German GDP
Oliver Holtemöller, Boris Kozyrev
IWH Discussion Papers,
No. 6,
2024
Abstract
In this study, we analyzed the forecasting and nowcasting performance of a generalized regression neural network (GRNN). We provide evidence from Monte Carlo simulations for the relative forecast performance of GRNN depending on the data-generating process. We show that GRNN outperforms an autoregressive benchmark model in many practically relevant cases. Then, we applied GRNN to forecast quarterly German GDP growth by extending univariate GRNN to multivariate and mixed-frequency settings. We could distinguish between “normal” times and situations where the time-series behavior is very different from “normal” times such as during the COVID-19 recession and recovery. GRNN was superior in terms of root mean forecast errors compared to an autoregressive model and to more sophisticated approaches such as dynamic factor models if applied appropriately.
Read article
Tracking Weekly State-Level Economic Conditions
Christiane Baumeister, Danilo Leiva-León, Eric Sims
Review of Economics and Statistics,
No. 2,
2024
Abstract
This paper develops a novel dataset of weekly economic conditions indices for the 50 U.S. states going back to 1987 based on mixed-frequency dynamic factor models with weekly, monthly, and quarterly variables that cover multiple dimensions of state economies. We find considerable cross-state heterogeneity in the length, depth, and timing of business cycles. We illustrate the usefulness of these state-level indices for quantifying the main contributors to the economic collapse caused by the COVID-19 pandemic and for evaluating the effectiveness of the Paycheck Protection Program. We also propose an aggregate indicator that gauges the overall weakness of the U.S. economy.
Read article
Is Risk the Fuel of the Business Cycle? Financial Frictions and Oil Market Disturbances
Christoph Schult
IWH Discussion Papers,
No. 4,
2024
Abstract
I estimate a dynamic stochastic general equilibrium (DSGE) model for the United States that incorporates oil market shocks and risk shocks working through credit market frictions. The findings of this analysis indicate that risk shocks play a crucial role during the Great Recession and the Dot-Com bubble but not during other economic downturns. Credit market frictions do not amplify persistent oil market shocks. This result holds as long as entry and exit rates of entrepreneurs are independent of the business cycle.
Read article
Financial Technologies and the Effectiveness of Monetary Policy Transmission
Iftekhar Hasan, Boreum Kwak, Xiang Li
European Economic Review,
January
2024
Abstract
This study investigates whether and how financial technologies (FinTech) influence the effectiveness of monetary policy transmission. We use an interacted panel vector autoregression model to explore how the effects of monetary policy shocks change with regional-level FinTech adoption. Results indicate that FinTech adoption generally mitigates the transmission of monetary policy to real GDP, consumer prices, bank loans, and housing prices, with the most significant impact observed in the weakened transmission to bank loan growth. The relaxed financial constraints, regulatory arbitrage, and intensified competition are the possible mechanisms underlying the mitigated transmission.
Read article
The Importance of Credit Demand for Business Cycle Dynamics
Gregor von Schweinitz
IWH Discussion Papers,
No. 21,
2023
Abstract
This paper contributes to a better understanding of the important role that credit demand plays for credit markets and aggregate macroeconomic developments as both a source and transmitter of economic shocks. I am the first to identify a structural credit demand equation together with credit supply, aggregate supply, demand and monetary policy in a Bayesian structural VAR. The model combines informative priors on structural coefficients and multiple external instruments to achieve identification. In order to improve identification of the credit demand shocks, I construct a new granular instrument from regional mortgage origination.
I find that credit demand is quite elastic with respect to contemporaneous macroeconomic conditions, while credit supply is relatively inelastic. I show that credit supply and demand shocks matter for aggregate fluctuations, albeit at different times: credit demand shocks mostly drove the boom prior to the financial crisis, while credit supply shocks were responsible during and after the crisis itself. In an out-of-sample exercise, I find that the Covid pandemic induced a large expansion of credit demand in 2020Q2, which pushed the US economy towards a sustained recovery and helped to avoid a stagflationary scenario in 2022.
Read article
Media Response
Media Response November 2024 IWH: Manchmal wäre der Schlussstrich die angemessenere Lösung in: TextilWirtschaft, 21.11.2024 IWH: Existenzgefahr Nun droht eine Pleitewelle in: DVZ…
See page
People
People Doctoral Students PhD Representatives Alumni Supervisors Lecturers Coordinators Doctoral Students Afroza Alam (Supervisor: Reint Gropp ) Julian Andres Diaz Acosta…
See page
Understanding Post-Covid Inflation Dynamics
Martín Harding, Jesper Lindé, Mathias Trabandt
Journal of Monetary Economics,
November
2023
Abstract
We propose a macroeconomic model with a nonlinear Phillips curve that has a flat slope when inflationary pressures are subdued and steepens when inflationary pressures are elevated. The nonlinear Phillips curve in our model arises due to a quasi-kinked demand schedule for goods produced by firms. Our model can jointly account for the modest decline in inflation during the Great Recession and the surge in inflation during the post-COVID period. Because our model implies a stronger transmission of shocks when inflation is high, it generates conditional heteroskedasticity in inflation and inflation risk. Hence, our model can generate more sizeable inflation surges due to cost-push and demand shocks than a standard linearized model. Finally, our model implies that the central bank faces a more severe trade-off between inflation and output stabilization when inflation is elevated.
Read article